Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Feinmotorik für Roboterhände

22.01.2015

Neurowissenschaftler des Deutschen Primatenzentrums können Greifbewegungen der Hand durch die Aktivität verschiedener Gehirnzellen vorhersagen

Schnürsenkel binden, den Kaffee umrühren, Briefe schreiben, Klavier spielen. Von alltäglichen bis hin zu anspruchsvollen Tätigkeiten: Unsere Hände benutzen wir so häufig wie kein zweites Körperteil. Durch die ausgeprägte Feinmotorik sind wir in der Lage, Greifbewegungen mit unterschiedlicher Präzision und Kraftverteilung anzuwenden.


Neuronale Informationen können eines Tages auch für die Kontrolle von Handprothesen verwendet werden.

Sebastian Lehm


Handbewegungen werden im Primatengehirn durch die Areale AIP, F5 und M1 gesteuert.

Grafik: Stefan Schaffelhofer

Diese Fähigkeit ist ein grundlegendes Merkmal der Primatenhand. Wie Handbewegungen im Gehirn geplant werden, war bis jetzt noch weitgehend unklar. Stefan Schaffelhofer, Andres Agudelo-Toro und Hansjörg Scherberger vom Deutschen Primatenzentrum (DPZ) konnten mit ihrer jüngsten Forschung an Rhesusaffen zeigen, wie verschiedene Greifbewegungen im Gehirn gesteuert werden.

Anhand elektrophysiologischer Messungen in jenen Hirnarealen, die für die Planung und Umsetzung von Handbewegungen verantwortlich sind, konnten die Wissenschaftler eine Vielzahl von Handstellungen durch die Analyse genau dieser neuronalen Signale vorhersagen. In ersten Anwendungsversuchen konnten die so entschlüsselten Grifftypen auf eine Roboterhand übertragen werden.

Die Ergebnisse der Studie sollen künftig in die Entwicklung von Neuroprothesen einfließen, um gelähmten Patienten die Wiedererlangung von Handfunktionen zu ermöglichen (The Journal of Neuroscience, 2015).

„Wir wollten herausfinden, wie verschiedene Handbewegungen vom Gehirn gesteuert werden und ob wir die Aktivität von Nervenzellen nutzen können, um unterschiedliche Grifftypen vorherzusagen“, sagt Stefan Schaffelhofer, Neurowissenschaftler in der Abteilung Neurobiologie des DPZ.

Im Rahmen seiner Doktorarbeit hat er sich intensiv mit jenen Gehirnarealen der Großhirnrinde beschäftigt, die für die Planung und Ausführung von Handbewegungen verantwortlich sind. Dabei hat er herausgefunden, dass visuelle Informationen für greifbare Objekte, speziell deren dreidimensionale Form und Größe, vornehmlich in der Region AIP verarbeitet werden. Die Übertragung der visuellen Eigenschaften eines Gegenstandes in entsprechende Bewegungsbefehle wird dagegen überwiegend in den Arealen F5 und M1 gesteuert.

Um die Regulierung verschiedener Greifbewegungen in diesen Hirnregionen im Detail zu untersuchen wurde die Aktivität von Nervenzellen mit sogenannten Multielektrodenarrays aufgezeichnet. Die Forscher haben die Rhesusaffen darauf trainiert, 50 Objekte unterschiedlicher Form und Größe wiederholt zu greifen. Gleichzeitig wurden alle Finger- und Handbewegungen der Affen mit Hilfe eines elektromagnetischen Datenhandschuhs aufgezeichnet um die angewandten Grifftypen zu identifizieren und mit den neuronalen Signalen vergleichen zu können.

„Wir haben alle Objekte vor Beginn einer Greifbewegung beleuchtet, so dass die Affen sie sehen und deren Form erkennen konnten“, erklärt Stefan Schaffelhofer. „Die anschließende Greifbewegung fand dann mit kurzer Verzögerung im Dunkeln statt. So konnten wir die Reaktionen der Nervenzellen auf die visuellen Reize von den rein motorischen Signalen trennen und außerdem die Phase der Bewegungsplanung untersuchen.“

Anhand der Aktivität der Nervenzellen, die während der Planung und Ausführung der Greifbewegungen gemessen wurde, konnten die Wissenschaftler anschließend Rückschlüsse auf die angewendeten Grifftypen ziehen. Die vorhergesagten Griffe wurden mit den tatsächlich im Versuch aufgezeichneten Handkonfigurationen abgeglichen.

„Die Aktivität der gemessenen Gehirnzellen ist stark vom angewandten Griff abhängig. Anhand dieser neuronalen Unterschiede, können wir berechnen, welche Handbewegung das Tier ausführt“, sagt Stefan Schaffelhofer. „In der Planungsphase lagen wir damit zu 86 Prozent richtig, in der Greifphase konnten wir die Bewegung zu 92 Prozent richtig bestimmen.“

Die so entschlüsselten Handkonfigurationen wurden anschließend erfolgreich auf eine Roboterhand übertragen. Damit haben die Wissenschaftler gezeigt, dass eine große Anzahl verschiedener Handstellungen mittels neuronaler Planungs- und Ausführungssignale erfasst und genutzt werden kann. Eine Erkenntnis, die zukünftig vor allem für querschnittsgelähmte Patienten, bei denen die Verbindung zwischen Gehirn und Gliedmaßen nicht mehr funktioniert, eine große Bedeutung hat.

„Die Ergebnisse unserer Studie sind sehr wichtig für die Entwicklung von neuronal gesteuerten Handprothesen. Sie zeigen wo und vor allem wie das Gehirn Greifbewegungen steuert“, fasst Stefan Schaffelhofer zusammen. „Im Unterschied zu anderen Anwendungen ermöglicht unser Verfahren eine Vorhersage der Grifftypen bereits in der Planungsphase der Bewegung. In Zukunft könnten damit neuronale Schnittstellen generiert werden, die diese motorischen Signale auslesen, interpretieren und Prothesen steuern können.“

Originalpublikation

Schaffelhofer, S., Agudelo-Toro, A. and Scherberger, H. (2015): Decoding a wide range of hand configurations from macaque motor, premotor and parietal cortices. The Journal of Neuroscience 35(3):1068-1081

Kontakt

Dr. Stefan Schaffelhofer
Tel.: +49 551 3851-484
E-Mail: sschaffelhofer@dpz.eu

Dr. Susanne Diederich (Kommunikation)
Tel.: +49 551 3851-359
E-Mail: sdiederich@dpz.eu

Die Deutsches Primatenzentrum GmbH (DPZ) - Leibniz-Institut für Primatenforschung betreibt biologische und biomedizinische Forschung über und mit Primaten auf den Gebieten der Infektionsforschung, der Neurowissenschaften und der Primatenbiologie. Das DPZ unterhält außerdem drei Freilandstationen in den Tropen und ist Referenz- und Servicezentrum für alle Belange der Primatenforschung. Das DPZ ist eine der 89 Forschungs- und Infrastruktureinrichtungen der Leibniz-Gemeinschaft.

Weitere Informationen:

http://www.dpz.eu/de/startseite/einzelansicht/news/feinmotorik-fuer-roboterhaend...
http://youtu.be/ajcmvFlTEN8

Dr. Susanne Diederich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher finden Hinweise auf verknotete Chromosomen im Erbgut
20.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Aus der Moosfabrik
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise