Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

„Fehlalarm“ im Immunsystem führt zur Entstehung bestimmter Formen von Lymphdrüsenkrebs

13.01.2015

Tübinger Wissenschaftler wollen durch Erforschung der Ursachen von Non-Hodgkin-Lymphomen neue Behandlungsansätze ermöglichen

Non-Hodgkin-Lymphome, umgangssprachlich auch als Lymphdrüsenkrebs bekannt, stellen in Deutschland mit jährlich mehr als 10.000 Neuerkrankungen eine der häufigsten Krebserkrankungen dar, Tendenz steigend.

Non-Hodgkin-Lymphome sind in frühen Stadien meist dauerhaft heilbar. Jedoch entwickeln sich in einigen Fällen aggressivere Formen, die nicht auf konventionelle Therapien ansprechen. Daher haben Forscher der Arbeitsgruppe von Juniorprofessor Alexander Weber in der Abteilung Immunologie der Universität und des Universitätsklinikums Tübingen in Kooperation mit Forschern des Nationalen Instituts für Chemie in Ljubljana, Slowenien, den Krebs auf molekularer Ebene genauer untersucht. Sie entschlüsselten einen Mechanismus, der weitreichend die unkontrollierte Vermehrung der Krebszellen beeinflusst. Ihre Forschungsergebnisse sind kürzlich in der Fachzeitschrift Blood erschienen.

Bei Patienten mit einem Non-Hodgkin-Lymphom vermehren sich Blutzellen unkontrolliert, in 80 Prozent der Fälle sind davon die sogenannten B-Zellen betroffen. Im gesunden Organismus spielt dieser Zelltyp eine tragende Rolle bei der Immunabwehr: Erkennt das Immunsystem einen Krankheitserreger wie zum Beispiel bestimmte Bakterien, so werden die B-Zellen angeregt, sich zu vermehren und große Mengen an spezifischen Antikörpern gegen diese körperfremden Eindringlinge auszuschütten. Diese werden dadurch unschädlich gemacht.

Die Krankheitserreger werden von speziellen Immunsensoren auf der Oberfläche der B-Zellen erkannt. Wenn ein Eindringling andockt, leitet die B-Zelle ein Alarmsignal ins Zellinnere weiter: Dabei bindet das Protein MyD88 als zellinterner „Adapter“ an den aktivierten Immunsensor und holt weitere MyD88-Proteine heran, welche dann sogenannte Signalkomplexe bilden. Diese wiederum schalten Signalwege an, die für eine vermehrte Produktion von B-Zellen und Antikörpern sorgen. Bei Non-Hodgkin-Lymphomen ist häufig das MyD88-Protein mutiert, also verändert.

Die Tübinger Forscher konnten jetzt erstmals zeigen, dass die mutierten MyD88-Proteine „klebrig“ werden und spontan aktive Signalkomplexe bilden. „Ohne Einwirkung von Krankheitserregern entstehen dann vermutlich ununterbrochen aktive Signalkomplexe und geben sozusagen Fehlalarm. Dies fördert die unkontrollierte Vermehrung der B-Zellen des Immunsystems, der Krebs entsteht“, beschreibt Olaf-Oliver Wolz, Doktorand in der Arbeitsgruppe von Alexander Weber, die Vorgänge.

Im Laborversuch mit Zellkulturen konnten die Forscher mit einem Hemmstoff das Verklumpen der mutierten MyD88-Proteine unterdrücken und die Krebszellen dadurch zum Absterben bringen, nicht mutierte Zellen überlebten die Behandlung.

„Die Krebs auslösende MyD88-Mutation kommt in sehr vielen, vom Verlauf und der Therapie her sehr unterschiedlichen Krankheitsbildern von Lymphdrüsenkrebs vor“, sagt Alexander Weber. Er hofft, dass sich für diese Patientengruppe eine Therapie aus dem neu entdeckten Ansatzpunkt entwickeln lässt. „Zukünftige Wirkstoffe sollten wie im Laborversuch gezielt die mutierten MyD88-Proteine hemmen, und so die Krebszellen töten, die gesunden Zellen jedoch unbeeinflusst lassen.“ Zunächst müssen die Forscher die vom „klebrigen“ MyD88-Protein fehlregulierten Prozesse aber detaillierter verstehen.

Originalpublikation:
Monika Avbelj, Olaf-Oliver Wolz, Ota Fekonja, Mojca Benčina, Matej Repič, Janez Mavri, Jens Krüger, Charlotta Schärfe, Magno Delmiro-Garcia, Gabriela Panter, Oliver Kohlbacher, Alexander N. R. Weber, and Roman Jerala: Activation of lymphoma-associated MyD88 mutations via allostery-induced TIR-domain oligomerization. Blood, http://dx.doi.org/10.1182/blood-2014-05-573188

Kontakt:
Juniorprofessor Dr. Alexander Weber
Universität Tübingen
Interfakultäres Institut für Zellbiologie – Abteilung Immunologie
Telefon +49 7071 29-87623
alexander.weber[at]uni-tuebingen.de

Dr. Karl Guido Rijkhoek | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-tuebingen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie