Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Farbkodierender Sensor: Nanostrukturen für berührungsfreie Touchscreens

23.09.2015

LMU-Chemiker entwickeln Nano-Schichten, die ihre Farbe bei Feuchtigkeit ändern. Mit dem neuen Material könnten interaktive Bildschirmoberflächen berührungslos navigiert werden.

LMU-Chemiker haben erstmals photonische Kristalle aus dünnsten Nanoschichten entwickelt, die extrem sensitiv auf Feuchte reagieren. „Sie ändern ihre Farbe abhängig von der Feuchtigkeit. Das prädestiniert sie für die Entwicklung von sogenannten Touchless-Endgeräten, die sich ohne Berührung steuern lassen“, sagt Professor Bettina Lotsch vom Department Chemie der LMU. Über ihre Ergebnisse berichten die LMU-Chemiker aktuell im Fachmagazin Advanced Materials.


Die Abbildungsserie zeigt, wie sich mithilfe des von den LMU-Forschern entwickelten photonischen Sensors die Fingerbewegungen farblich abbilden lassen. Hierbei reagiert der photonische Kristall berührungslos auf die feuchte Atmosphäre des Fingers.

„Der menschliche Finger ist von einer Feuchtigkeitsatmosphäre umgeben“, erläutert Katalin Szendrei aus der Arbeitsgruppe von Professor Lotsch das Prinzip des neuen photonischen Sensors. „Unser Sensor erfasst den Grad der Feuchtigkeit und reagiert darauf mit einer entsprechenden Änderung der Farbe – und das ohne Berührung.“

Das macht das neue Nanomaterial für die Anwendung in berührungslosen Touchscreens interessant. „Vor allem bei Bildschirmoberflächen, die von vielen Menschen genutzt werden, etwa von Fahrkarten- oder Bankautomaten, hätte eine berührungslose Navigation deutliche Hygienevorteile“, beschreibt Szendrei eine mögliche Anwendung.

Neues System besticht durch bislang unerreichte Empfindlichkeit und Reaktionszeiten

Photonische Kristalle kommen in der Natur beispielsweise in Perlmutt oder den Farben von Schmetterlingsflügeln vor. Dem Team um Lotsch ist es gelungen, photonische Kristalle auf Basis von zweidimensionalen Antimonphosphaten als aktive Materialien zu entwickeln.

Das neue Nanomaterial ist chemisch stabil, transparent und einfach herzustellen. Gegenüber anderen Sensoren auf Nanoschicht-Basis überzeugt der photonische Kristall durch kürzere Ansprechzeiten, eine deutlich höhere Empfindlichkeit und gute Langzeitstabilität.

„Diese einmalige Kombination von Eigenschaften ermöglicht es, Fingerbewegungen farbkodiert in Echtzeit abzubilden“, sagt Pirmin Ganter aus der Arbeitsgruppe von Bettina Lotsch. Zudem ist das neue System luftstabil und damit nicht nur im Labor, sondern auch unter natürlichen Umweltbedingungen voll funktionsfähig.

Die LMU-Chemiker haben bereits ein Patent für ihre Neu-Entwicklung eingereicht. Inzwischen arbeiten sie gemeinsam mit dem Fraunhofer EMFT in München an der Realisierung eines Prototyps, der zusätzlich zur Farbkodierung auch einen elektronischen Auslesevorgang erlaubt.

Kontakt:
Prof. Dr. Bettina Valeska Lotsch
Department Chemie
Ludwig-Maximilians-Universität München und
Max-Planck-Institut für Festkörperforschung, Stuttgart
Tel.: +49 (0)89 2180-77429 und +49 (0)711 689-1610
E-Mail: bettina.lotsch@cup.uni-muenchen.de

Katalin Szendrei
Department Chemie
Ludwig-Maximilians-Universität München
E-Mail: katalin.szendrei@cup.uni-muenchen.de

Publikation:
Katalin Szendrei, Pirmin Ganter, Olalla Sànchez-Sobrado, Roland Eger, Alexander Kuhn, Bettina V. Lotsch:
Touchless Optical Finger Motion Tracking based on 2D Nanosheets with Giant Moisture Responsiveness
In: Advanced Materials 2015

Weitere Informationen:

http://www.uni-muenchen.de/forschung/news/2015/lotsch_nanosheets.html

Luise Dirscherl | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment
25.09.2017 | Max-Planck-Institut für Biochemie

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops