Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Farbe in die Welt der Fliege kommt

10.12.2013
Schmackhafter Brotkrümel oder langweiliges Staubkörnchen? Farbensehen erleichtert das Erkennen von Objekten. Neurobiologen am Bernstein Zentrum München finden einen neuen Farbkanal im Facettenauge der Fliege und tragen so dazu bei, die Farbwahrnehmung bei Insekten zu enträtseln.

Die Fähigkeit, Farben zu unterscheiden, beruht darauf, dass das Gehirn Signale aus Sinneszellen vergleicht, die durch Licht unterschiedlicher Wellenlänge angeregt werden. Wie aber gelangen Informationen über Farben ins Gehirn einer Fliege?


Um Objekte anhand ihrer Farbe zu erkennen, benutzt die Fliege sowohl die inneren als auch die äußeren Rezeptorzellen ihrer unzählig vielen kleinen Einzelaugen, wie Bernstein Forscher herausfanden.

Pavel Masek/Bernstein Koordinationsstelle, 2013

Insekten besitzen Facettenaugen, welche aus vielen Einzelaugen aufgebaut sind. Ein Einzelauge besteht aus acht lichtempfindlichen Sinneszellen oder Photorezeptoren. Sechs von ihnen bilden einen Ring, in dessen Mitte die beiden weiteren Zellen liegen. Bei Fliegen werden die sechs äußeren Rezeptorzellen von Licht über einen breiten Wellenlängenbereich hinweg angesprochen.

Da die Wahrnehmung einer Farbe auf der Verarbeitung von spezifischen Bereichen des Lichtspektrums beruht, gingen Forscher davon aus, dass diese Rezeptoren eher für Bewegungssehen zuständig sind. Die beiden inneren Photorezeptoren sprechen hingegen auf jeweils einen engen Wellenlängenbereich des Lichts an – und können damit eindeutige Informationen über Farbzusammensetzungen weiterleiten. Sie galten bisher als alleinige Quelle des Farbsehens der Fliege.

Neurowissenschaftler am Bernstein Zentrum München, dem Max-Planck-Institut für Neurobiologie in Martinsried und der Ludwig-Maximilians-Universität München stellten nun fest, dass diese Annahme revidiert werden muss. „Auch die äußeren Photorezeptoren tragen zur Farbunterscheidung bei der Fliege bei“, sagt Thomas Wachtler, einer der an der Studie beteiligten Forscher. Anhand eines Computermodells simulierten die Biologen die Verarbeitung der Photorezeptorsignale im Fliegenauge – und erkannten, dass die Signale der äußeren Rezeptoren berücksichtigt werden muss, um die Farbunterscheidungsfähigkeit der Fliegen erklären zu können.

Um die theoretischen Daten zu stützen, untersuchten die Forscher in einem Experiment genetisch manipulierte Fliegen, bei denen nicht alle Photorezeptortypen funktionsfähig waren. So benutzten sie etwa Fliegen, die neben den äußeren Sinneszelle nur einen der beiden inneren farbspezifischen Rezeptorzellen besaßen – und trotzdem zwei Farben unterschieden konnten. „Dies zeigt, dass das Fliegengehirn Informationen von inneren und äußeren Photorezeptoren zum Vergleich heranzieht“, erläutert Christopher Schnaitmann, Erstautor der Studie. Als die Wissenschaftler bei gesunden Fliegen die Aktivität der Nervenzellen hemmten, welche die Signale der äußeren Rezeptorzellen zum Gehirn weiterleiten, bestätigte sich diese Annahme: Die Fähigkeit der Fliegen, Farbunterschiede wahrzunehmen, war erheblich beeinträchtigt.

Die äußeren Photorezeptoren scheinen somit wahre Multitasking-Talente zu sein und sowohl zum Bewegungs- als auch Farbsehen der Fliege beizutragen. Diese Doppelrolle ist bei kleinen Tieren durchaus sinnvoll: So ist bei begrenzter Anzahl an Nervenzellen sichergestellt, dass die Fliege trotzdem komplexe visuelle Fähigkeiten besitzt – und leicht einen Brotkrümel von einem Staubkorn unterscheiden kann.

Das Bernstein Zentrum München ist Teil des Nationalen Bernstein Netzwerks Computational Neuroscience. Seit 2004 fördert das Bundesministerium für Bildung und Forschung (BMBF) mit dieser Initiative die neue Forschungsdisziplin Computational Neuroscience mit über 170 Mio. €. Das Netzwerk ist benannt nach dem deutschen Physiologen Julius Bernstein (1835-1917).

Weitere Informationen erteilen Ihnen gerne:
Dr. Hiromu Tanimoto
Max-Planck-Institut für Neurobiologie
Am Klopferspitz 18
82152 Martinsried
Tel: +49 (0)89 8578 3492
Email: hiromut@neuro.mpg.de
PD Dr. Thomas Wachtler
Ludwig-Maximilians-Universität
Department Biologie II 

Grosshadernerstr. 2 

82152 Martinsried
Tel: +49 (0)89 2180 74810 

Email: wachtler@bio.lmu.de
Originalpublikation:
C. Schnaitmann, C. Garbers, T. Wachtler & H. Tanimoto (2013): Color discrimination with broadband photoreceptors. Current Biology, 23(23): 2375-82.

http://dx.doi.org/10.1016/j.cub.2013.10.037

Weitere Informationen:

http://www.neuro.mpg.de/tanimoto Webseite Hiromu Tanimoto
http://neuro.bio.lmu.de/research_groups/res-wachtler_th Webseite Thomas Wachtler
http://www.bccn-munich.de Bernstein Zentrum München
http://www.uni-muenchen.de Ludwig-Maximilians-Universität München
http://wwww.nncn.de Nationales Bernstein Netzwerk Computational Neuroscience

Mareike Kardinal | idw
Weitere Informationen:
http://wwww.nncn.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie