Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Falsche Schnitte leiten Herzentwicklung fehl

04.11.2014

RBM24 wichtiger Faktor bei alternativem Spleißen in Herz- und Skelettmuskelzellen

Auf dem Weg zum fertigen Protein erfahren die unterschiedlichen Zwischenprodukte der Proteinbiosynthese weitreichende Modifikationen. Eine solche Veränderung ist das Spleißen der Boten-Ribonukleinsäure.


Embryonales Mäuseherz: rechts: Ohne RBM24 ist der Herzvorhof vergrößert (gelber Pfeil), die Herzscheidewand fehlt (schwarzer Pfeil) und die Ausbildung der Herzmuskulatur gestört (blauer, grüner Pfeil)

MPI f. Herz- und Lungenforschung

Dabei werden aus der Nukleinsäurekette bestimmte Teile herausgeschnitten. Welche Abschnitte entfernt werden, hängt vom jeweiligen Zelltyp ab. Die Regulation dieses als alternatives Spleißen bezeichneten Prozesses ist äußerst komplex. Wissenschaftler vom Max-Planck-Institut für Herz- und Lungenforschung in Bad Nauheim konnten nun ein wichtiges Regulationselement identifizieren, das entscheidend am alternativen Spleißen in Muskelzellen beteiligt ist.

Die Studie könnte die Grundlage für neue Therapiekonzepte darstellen, denn Fehler beim alternativen Spleißen sind oftmals die Ursache für schwere Herz- und Skelettmuskelerkrankungen.

Gene liefern eine exakte Vorlage für die die Biosynthese von Proteinen. Die fertigen Proteine stellen allerdings keine hundertprozentigen Abschriften ihrer Gene dar, da an verschiedenen Stellen der Proteinbiosynthese Zwischenprodukte modifiziert werden. Eine solche Anpassung erfährt auch die Boten-Ribonukleinsäure (mRNA).

Die mRNA entsteht als erstes Produkt bei der Abschrift der genetischen Information. Der Reifeprozess der mRNA besteht unter anderem darin, dass nicht-codierende Teile, sogenannte Introns, aus der mRNA herausgeschnitten und die angrenzenden als Exone bezeichneten codierenden Bereiche miteinander verknüpft werden. Dieser Prozess wird als Spleißen bezeichnet.

Welche Teile der mRNA jeweils entfernt werden, kann je nach Zelltyp variieren. Beispielsweise wird die mRNA einer Reihe von Genen in Herz- und Skelettmuskelzellen unterschiedlich gespleißt. Dieser Vorgang bezeichnet man als alternatives Spleißen. Es führt dazu, dass aus einem Gen verschiedene Proteine gebildet, die unterschiedliche Funktionen ausüben können.

An der Regulation des Spleißens sind mehr als 300 Faktoren beteiligt. Viele Details des Ablaufs sind bisher noch unbekannt. Fehler beim alternativen Spleißen sind für eine ganze Reihe von zum Teil schweren Erkrankungen verantwortlich. Ein besseres Verständnis des alternativen Spleißens könnte deshalb auch die Grundlage für die Entwicklung neuer Therapien darstellen.

Wissenschaftler vom Max-Planck-Institut für Herz- und Lungenforschung haben nun ein Protein namens RBM24 entdeckt, dass eine Schlüsselfunktion bei der Regulation des alternativen Spleißens in Muskelzellen besitzt. „Unsere Studie zeigt, dass RMB24 eine wichtige Rolle bei der embryonalen Herzentwicklung ausübt. Wir fanden mindestens 68 alternative Spleiß-Vorgänge, für die RBM24 benötigt wird“, sagte Thomas Braun, Direktor am Max-Planck-Institut.

Die Bad Nauheimer Wissenschaftler stellten bei Mäusen, die nach einem genetischen Eingriff kein RBM24 mehr produzieren, eine abnormale Herzentwicklung fest. Die Beeinträchtigung der Herzfunktion war so stark, dass diese Mäuse nicht lebensfähig waren.

Fehlbildungen zeigten sich sowohl am Organ als auch auf der Ebene der Herzmuskelzellen. Letzteren fehlten weitgehend die Sarkomere. Diese sind die kleinste funktionelle Einheit der Muskulatur. Im Mikroskop sind Sarkomere an einer charakteristischen, gestreiften Struktur erkennbar.

Ins Bild passte, dass unter der von RBM24 alternativ regulierten Spleiß-Vorgänge eine ganze Reihe von Faktoren waren, deren biologische Funktion in Zusammenhang mit der Entwicklung von Muskelzellen steht.

„Viele der durch alternatives Spleißen unter RBM24-Kontrolle gebildeten Proteine sind für Fehlbildungen des Herzens verantwortlich. Unsere Daten zeigen, dass die Ursache in einer Fehlregulation des alternativen Spleißens zu suchen ist“, sagte André Schneider, Koautor der Studie. Auffällig sei, dass die betreffenden Gene vor allem mit der Bildung des Sarkomers in Muskelzellen in Zusammenhang stehen.

Die Max-Planck-Forscher gehen davon aus, dass RBM24 eine wichtige Komponente unter vielen ist, die alternatives Spleißen in einem komplexen, ausbalancierten System von Aktivatoren und Repressoren steuern. Fehlt RBM24, geht diese Balance verloren, sodass fehlerhafte Proteinformen entstehen“, so Schneider.

Die Forscher sind überzeugt, mit RBM24 einen der wichtigsten Spleiß-Faktoren bei Muskelzellen gefunden zu haben. „Wir haben mit der Studie neue Einblicke in die Entstehung von Erkrankungen der Herzmuskulatur gewinnen können“, so Braun. Man habe allerdings erst die Spitze des Eisbergs entdeckt und werde in weiteren Studien untersuchen, wie RBM24 das alternative Spleißen im Detail reguliert.

Originalpublikation:
Jiwen Yang, Lee-Hsueh Hung, Thomas Licht, Sawa Kostin, Mario Looso, Ekaterina Khrameeva, Albrecht Bindereif, Andre Schneider, Thomas Braun: RBM24 is a major regulator of muscle-specific alternative splicing. Developmental Cell 2014. doi: 10.1016/j.devcel.2014.08.025

Kontakt:
Dr. Matthias Heil
Presse- & Öffentlichkeitsarbeit
Max-Planck-Institut für Herz- und Lungenforschung
Tel.: 06032/705-1705
Mobil: 0171/5663972
Email: matthias.heil@mpi-bn.mpg.de

Dr Harald Rösch | Max-Planck-Gesellschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einblick ins geschlossene Enzym
26.06.2017 | Universität Konstanz

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie