Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Falsche Schnitte leiten Herzentwicklung fehl

04.11.2014

RBM24 wichtiger Faktor bei alternativem Spleißen in Herz- und Skelettmuskelzellen

Auf dem Weg zum fertigen Protein erfahren die unterschiedlichen Zwischenprodukte der Proteinbiosynthese weitreichende Modifikationen. Eine solche Veränderung ist das Spleißen der Boten-Ribonukleinsäure.


Embryonales Mäuseherz: rechts: Ohne RBM24 ist der Herzvorhof vergrößert (gelber Pfeil), die Herzscheidewand fehlt (schwarzer Pfeil) und die Ausbildung der Herzmuskulatur gestört (blauer, grüner Pfeil)

MPI f. Herz- und Lungenforschung

Dabei werden aus der Nukleinsäurekette bestimmte Teile herausgeschnitten. Welche Abschnitte entfernt werden, hängt vom jeweiligen Zelltyp ab. Die Regulation dieses als alternatives Spleißen bezeichneten Prozesses ist äußerst komplex. Wissenschaftler vom Max-Planck-Institut für Herz- und Lungenforschung in Bad Nauheim konnten nun ein wichtiges Regulationselement identifizieren, das entscheidend am alternativen Spleißen in Muskelzellen beteiligt ist.

Die Studie könnte die Grundlage für neue Therapiekonzepte darstellen, denn Fehler beim alternativen Spleißen sind oftmals die Ursache für schwere Herz- und Skelettmuskelerkrankungen.

Gene liefern eine exakte Vorlage für die die Biosynthese von Proteinen. Die fertigen Proteine stellen allerdings keine hundertprozentigen Abschriften ihrer Gene dar, da an verschiedenen Stellen der Proteinbiosynthese Zwischenprodukte modifiziert werden. Eine solche Anpassung erfährt auch die Boten-Ribonukleinsäure (mRNA).

Die mRNA entsteht als erstes Produkt bei der Abschrift der genetischen Information. Der Reifeprozess der mRNA besteht unter anderem darin, dass nicht-codierende Teile, sogenannte Introns, aus der mRNA herausgeschnitten und die angrenzenden als Exone bezeichneten codierenden Bereiche miteinander verknüpft werden. Dieser Prozess wird als Spleißen bezeichnet.

Welche Teile der mRNA jeweils entfernt werden, kann je nach Zelltyp variieren. Beispielsweise wird die mRNA einer Reihe von Genen in Herz- und Skelettmuskelzellen unterschiedlich gespleißt. Dieser Vorgang bezeichnet man als alternatives Spleißen. Es führt dazu, dass aus einem Gen verschiedene Proteine gebildet, die unterschiedliche Funktionen ausüben können.

An der Regulation des Spleißens sind mehr als 300 Faktoren beteiligt. Viele Details des Ablaufs sind bisher noch unbekannt. Fehler beim alternativen Spleißen sind für eine ganze Reihe von zum Teil schweren Erkrankungen verantwortlich. Ein besseres Verständnis des alternativen Spleißens könnte deshalb auch die Grundlage für die Entwicklung neuer Therapien darstellen.

Wissenschaftler vom Max-Planck-Institut für Herz- und Lungenforschung haben nun ein Protein namens RBM24 entdeckt, dass eine Schlüsselfunktion bei der Regulation des alternativen Spleißens in Muskelzellen besitzt. „Unsere Studie zeigt, dass RMB24 eine wichtige Rolle bei der embryonalen Herzentwicklung ausübt. Wir fanden mindestens 68 alternative Spleiß-Vorgänge, für die RBM24 benötigt wird“, sagte Thomas Braun, Direktor am Max-Planck-Institut.

Die Bad Nauheimer Wissenschaftler stellten bei Mäusen, die nach einem genetischen Eingriff kein RBM24 mehr produzieren, eine abnormale Herzentwicklung fest. Die Beeinträchtigung der Herzfunktion war so stark, dass diese Mäuse nicht lebensfähig waren.

Fehlbildungen zeigten sich sowohl am Organ als auch auf der Ebene der Herzmuskelzellen. Letzteren fehlten weitgehend die Sarkomere. Diese sind die kleinste funktionelle Einheit der Muskulatur. Im Mikroskop sind Sarkomere an einer charakteristischen, gestreiften Struktur erkennbar.

Ins Bild passte, dass unter der von RBM24 alternativ regulierten Spleiß-Vorgänge eine ganze Reihe von Faktoren waren, deren biologische Funktion in Zusammenhang mit der Entwicklung von Muskelzellen steht.

„Viele der durch alternatives Spleißen unter RBM24-Kontrolle gebildeten Proteine sind für Fehlbildungen des Herzens verantwortlich. Unsere Daten zeigen, dass die Ursache in einer Fehlregulation des alternativen Spleißens zu suchen ist“, sagte André Schneider, Koautor der Studie. Auffällig sei, dass die betreffenden Gene vor allem mit der Bildung des Sarkomers in Muskelzellen in Zusammenhang stehen.

Die Max-Planck-Forscher gehen davon aus, dass RBM24 eine wichtige Komponente unter vielen ist, die alternatives Spleißen in einem komplexen, ausbalancierten System von Aktivatoren und Repressoren steuern. Fehlt RBM24, geht diese Balance verloren, sodass fehlerhafte Proteinformen entstehen“, so Schneider.

Die Forscher sind überzeugt, mit RBM24 einen der wichtigsten Spleiß-Faktoren bei Muskelzellen gefunden zu haben. „Wir haben mit der Studie neue Einblicke in die Entstehung von Erkrankungen der Herzmuskulatur gewinnen können“, so Braun. Man habe allerdings erst die Spitze des Eisbergs entdeckt und werde in weiteren Studien untersuchen, wie RBM24 das alternative Spleißen im Detail reguliert.

Originalpublikation:
Jiwen Yang, Lee-Hsueh Hung, Thomas Licht, Sawa Kostin, Mario Looso, Ekaterina Khrameeva, Albrecht Bindereif, Andre Schneider, Thomas Braun: RBM24 is a major regulator of muscle-specific alternative splicing. Developmental Cell 2014. doi: 10.1016/j.devcel.2014.08.025

Kontakt:
Dr. Matthias Heil
Presse- & Öffentlichkeitsarbeit
Max-Planck-Institut für Herz- und Lungenforschung
Tel.: 06032/705-1705
Mobil: 0171/5663972
Email: matthias.heil@mpi-bn.mpg.de

Dr Harald Rösch | Max-Planck-Gesellschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie