Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Falsch gefischt - Trial-and-Error-Prinzip wichtige Ursache für Unfruchtbarkeit bei Frauen?

19.08.2011
Ein wesentlicher Schritt bei der Bildung einer Eizelle ist die Trennung der Chromosomenpaare. Unglücklicherweise arbeitet die dafür zuständige zelluläre Maschinerie jedoch beim „Herausfischen“ der aufzuteilenden Chromosomen aus dem Zellinneren bisweilen äußerst unpräzise.

Dies jedenfalls haben Wissenschaftler am Europäischen Laboratorium für Molekularbiologie (EMBL) in Heidelberg, Deutschland, in einer Studie herausgefunden, die heute online im Fachmagazin Cell veröffentlicht wurde.

Das dabei unerwartet häufig auftretende Prinzip von Trial-and-Error könnte erklären, warum eine fehlerhafte Anzahl von Chromosomen in der Eizelle die häufigste Ursache für Fehlgeburten und schwerwiegende erblich bedingte Krankheiten ist. Dazu zählen u.a. Trisomien, wie z.B. das Down-Syndrom. Dieser Defekt ist damit auch eine wichtige Ursache weiblicher Unfruchtbarkeit.

In unseren Zellen befinden sich stets zwei Kopien eines jeden Chromosoms, wobei eine Kopie von der Mutter und eine vom Vater stammt. Eine Oozyte – d.h. eine Zelle, die zu einer Eizelle heranreift – muss sich im Laufe des Reifungsprozesses von der Hälfte ihrer Chromosomen trennen und behält von jedem Chromosom entweder die mütterliche oder die väterliche Kopie.

Bei der Trennung spielen die faserartigen Mikrotubuli eine wichtige Rolle, die sich wie eine Angelschnur bei den Chromosomen einhaken und diese zu den jeweils gegenüberliegenden Polen der Zelle ziehen. Die Wissenschaftler am EMBL entdeckten nun, dass sich die Mikrotubuli beim Angeln jedoch weitaus ungeschickter anstellen als bisher angenommen. Oft muss ein irrtümlich geangeltes Chromosom sogar wieder freigesetzt werden.

“Wir konnten direkt beobachten, dass sie mehrere Versuche benötigten, bis sie richtig eingehakt waren” so Jan Ellenberg, der Leiter der Studie am EMBL. “Insgesamt wurden 90% aller Chromosomen zunächst falsch festgeheftet, so dass der intrazelluläre Korrekturmechanismus auf Hochtouren arbeitete.”

Das Problem bei der Oozyte ist, dass sich zwei Angelschnüre – ausgehend jeweils von den gegenüberliegenden Seiten einer Zelle – sowohl an den von der Mutter als auch an den vom Vater stammenden Chromosomensatz desselben Chromosoms anheften müssen.

Jeder dieser Chromosomen besitzt eine Proteinstruktur, die als Kinetochor bezeichnet wird. Sie haben eine ähnliche Funktion wie der Magnet am Fisch des bekannten Angelspiels, d.h. sie ermöglichen es den Mikrotubuli sich festzuheften. Den Wissenschaftlern am EMBL ist es nun als ersten gelungen, die Bewegungen aller Kinetochore in den Eizellen von Mäusen über einen Zeitraum von 8 Stunden hinweg während der ersten Zellteilung im Mikroskop zu verfolgen. Mauseizellen sind denen des Menschen sehr ähnlich und eignen sich daher sehr gut als Forschungsmodell.

“Erstmals konnten wir über eine längere Zeit besonders hochauflösende Bilder aufnehmen,” erläutert Tomoya Kitajima, der die Forschungsexperimente durchführte. “Dies gelang mit Hilfe eines von uns speziell entwickelten Mikroskops, das die Chromosomen in der Zelle zunächst selbstständig lokalisiert, dann nur die betreffende Region beleuchtet und abbildet und so die Zelle nicht mehr schädigt als unbedingt nötig”.

Die Zeitraffer-Videos von Ellenberg und Kitajima zeigen außerdem deutlich, wie die Mikrotubuli beim Angeln „schummeln“ – ähnlich wie Kinder beim Spiel, die ihre magnetische Angel dazu benutzen den Fisch an eine günstige Stelle zu ziehen, von wo aus er leichter zu erreichen ist. So interagieren auch die Mikrotubuli in den frühen Phasen der Zellteilung mit den Chromosomenarmen, noch bevor sie sich an den Kinetochore festhaken, und manövrieren sie in eine spezielle Position, so dass sie sich wie ein Gürtel um das Zentrum der Mikrotubulispindel legen.

Allerdings reicht auch dieser am EMBL erstmals entdeckte Chromosomengürtel allein nicht aus, damit die Chromosomen sofort richtig herausgefischt werden. Die Wissenschaftler stellten vielmehr fest, dass die Anheftung an die Kinetochore bei dieser besonderen Form der Zellteilung, der Meiose, sehr viel fehleranfälliger ist als bei der Mitose, der einfacheren Zellteilung, mit der sich unsere Körperzellen teilen. Dies liegt vermutlich daran, dass der Vorläufer der Eizelle eine außergewöhnlich große Zelle ist und die Mikrotubuli bei der Meiose von ungefähr 80 verschiedenen Stellen innerhalb der Zelle ausgehen. Bei der Mitose hingegen finden sich lediglich die zwei Ausgangspunkte.

Zusammenfassend sagte Ellenberg: “Unsere Ergebnisse liefern eine schlüssige Erklärung für die enorme Fehlerquote bei der Bildung der Eizelle. Und sie bilden eine solide Grundlage für die weitere Erforschung der altersbedingten Unfruchtbarkeit bei Frauen, denn es ist mehr als wahrscheinlich, dass ein Bestandteil des zellulären Korrekturmechanismus dabei eine wichtige Rolle spielt”.

Kitajima, T.S., Ohsugi, M. & Ellenberg, J. Complete kinetochore tracking reveals error-prone homologous chromosome biorientation in mammalian oocytes.

Veröffentlichung in Cell am 19. August 2011, DOI 10.1016/j.cell.2011.07.031

Nutzungsbedingungen

EMBL Pressemitteilungen, Photos, Grafiken und Videos unterliegen dem EMBL copyright. Sie können für nicht-kommerzielle Nutzung frei reproduziert und verbreitet werden. Wir bitten um Nennung der Autoren und Institution.

Kontakt:
Lena Raditsch
Head of Communications & Public Relations
European Molecular Biology Laboratory - EMBL
Meyerhofstr. 1
69117 Heidelberg
Germany

T: +49 6221 387 8125
F: +49 6221 387 8525
M:+49 151 14532784
lena.raditsch@embl.de

Lena Raditsch | EMBL Research News
Weitere Informationen:
http://www.embl.org
http://www.eiroforum.org
http://www.embl.de/press/2011/110819_Heidelberg

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mit den Augen der Biene: Zoologe der Uni Graz entwickelt Verfahren zur Verbesserung dunkler Bilder
11.12.2017 | Karl-Franzens-Universität Graz

nachricht Molekulare Chaperone als Helfer gegen Chorea-Huntington identifiziert
11.12.2017 | Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Stabile Quantenbits

Physiker aus Konstanz, Princeton und Maryland schaffen ein stabiles Quantengatter als Grundelement für den Quantencomputer

Meilenstein auf dem Weg zum Quantencomputer: Wissenschaftler der Universität Konstanz, der Princeton University sowie der University of Maryland entwickeln ein...

Im Focus: Realer Versuch statt virtuellem Experiment: Erfolgreiche Prüfung von Nanodrähten

Mit neuartigen Experimenten enträtseln Forscher des Helmholtz-Zentrums Geesthacht und der Technischen Universität Hamburg, warum winzige Metallstrukturen extrem fest sind

Ultraleichte und zugleich extrem feste Werkstoffe – poröse Nanomaterialien aus Metall versprechen hochinteressante Anwendungen unter anderem für künftige...

Im Focus: Geburtshelfer und Wegweiser für Photonen

Gezielt Photonen erzeugen und ihren Weg kontrollieren: Das sollte mit einem neuen Design gelingen, das Würzburger Physiker für optische Antennen erarbeitet haben.

Atome und Moleküle können dazu gebracht werden, Lichtteilchen (Photonen) auszusenden. Dieser Vorgang verläuft aber ohne äußeren Eingriff ineffizient und...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

Hohe Heilungschancen bei Lymphomen im Kindesalter

07.12.2017 | Veranstaltungen

Der Roboter im Pflegeheim – bald Wirklichkeit?

05.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einmal durchleuchtet – dreifacher Informationsgewinn

11.12.2017 | Physik Astronomie

Kaskadennutzung auch bei Holz positiv

11.12.2017 | Agrar- Forstwissenschaften

Meilenstein in der Kreissägetechnologie

11.12.2017 | Energie und Elektrotechnik