Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Expression beider DNA-Stränge beobachtet

16.09.2009
Ein Ergebnis der Systembiologie-Forschung an der Albert-Ludwigs-Universität Freiburg

Die Doppelhelix der DNA, das genetische Material einer jeden lebenden Zelle, enthält die Gene in einer linearen Anordnung, deren Information während der Wachstums- und Entwicklungsprozesse hintereinander in eine Boten-RNA (mRNA) abgelesen wird. So steht es in den Lehrbüchern.

Die Forschergruppe um Prof. Dr. Wolfgang R. Hess von der Universität Freiburg berichtet im renommierten Wissenschaftsmagazin Molecular Systems Biology (aktuelle online-Veröffentlichung vom 15.09.09: "Evidence for a major role of antisense RNAs in cyanobacterial gene regulation") von einer Nutzung beider Stränge der DNA-Doppelhelix. Sie beobachtete in dem Cyanobakterium Synechocystis, dass häufig nicht nur von einem Strang die Information für die Bildung eines Eiweißes abgelesen wird, sondern auch der parallel verlaufende Gegenstrang aktiv ist. Dadurch entsteht ein zweites RNA-Molekül mit umgekehrter Orientierung, eine so genannte antisense-RNA.

Ähnliche Beobachtungen sind in jüngster Zeit an höheren Organismen, darunter dem Menschen, gemacht worden. Für Bakterien gab es bisher jedoch nur vereinzelte Hinweise auf ein solches Geschehen, vor allem im Zusammenhang mit so genannten extrachromosomalen Elementen, das sind zum Beispiel Antibiotika-Resistenzen-tragende Plasmide oder auch Bakteriophagen, Viren, die Bakterien angreifen. Die Beobachtungen der Forschergruppe um Prof. Dr. Wolfgang R. Hess zeigen nun, dass solche antisense-RNAs auch bei Bakterien sehr häufig sein können und vermutlich aktiv in die Regulation der Erbinformation verstrickt sind. Damit zeigt sich, dass auch diese eigentlich recht einfach gebauten Organismen komplexer sind als bisher gedacht. Cyanobakterien sind in jüngster Zeit verstärkt in den Fokus der Wissenschaft geraten wegen ihres Potenzials zur Herstellung wünschenswerter Biomoleküle durch direkte Nutzung der Sonnenenergie (Photosynthese). Die mögliche Rolle einer großen Zahl solcher antisense-RNAs in Bakterien muss bei der Nutzung dieser Organismen berücksichtigt werden und kann auch in der Medizin zu neuen Konzepten in der Abwehr human-pathogener Bakterien führen.

Weitere Informationen: Molecular Systems Biology vom 15. 09. 2009: "Evidence for a major role of antisense RNAs in cyanobacterial gene regulation" http://www.nature.com/msb/journal/v5/n1/full/msb200963.html

Kontakt:
Dr. Wolfgang R. Hess
Albert-Ludwigs-Universität Freiburg
Institut für Biologie III
Abteilung für Genetik und Experimentelle Bioinformatik
Schänzlestr. 1
D-79104 Freiburg
Tel. +49-(0)761-203-2796
Fax: +49-(0)761-203-2745
E-Mail: wolfgang.hess@biologie.uni-freiburg.de
Prof. Dr. Hess ist auch Sprecher der Freiburger Initiative für Systembiologie (FRISYS; siehe auch: http://www.frisys.de/), einer Einrichtung, die durch das Bundesministerium für Bildung und Forschung finanziert wird.

Rudolf-Werner Dreier | idw
Weitere Informationen:
http://www.cyanolab.de/
http://www.nature.com/msb/journal/v5/n1/full/msb200963.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher sehen Biomolekülen bei der Arbeit zu
05.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten