Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Experimente mit Bakterien: Evolution im Labor

11.09.2017

Experimente mit Bakterien zeigen, dass Gene miteinander fusionieren und so neue Proteine hervorbringen können

Lebewesen müssen sich fortwährend an ihre Umgebung anpassen, um darin zu bestehen. Verantwortlich für solche Anpassungen sind Änderungen im Erbgut. Paul Rainey vom Max-Planck-Institut für Evolutionsbiologie in Plön hat zusammen mit Kollegen aus Neuseeland in Laborexperimenten die Entstehung neuer, besser angepasster Zelltypen untersucht.


Links: Glatte Bakterienkolonien (Mitte) im Zellinneren wachsen innerhalb des Kulturmediums (unten). Rechts: Faltige Kolonien (Mitte) bilden Matten an der Oberfläche der Kulturflüssigkeit (unten).

MPI f. Evolutionsbiologie/ P. Rainey

Dabei haben die Forscher entdeckt, dass Bakterien neue Eigenschaften unter anderem durch die Fusion zweier Gene hervorbringen können. In manchen der Zellen sind Gene dadurch unter die Kontrolle eines neuen Promotors gelangt, so dass größere Mengen eines Proteins gebildet werden. In einem anderen Fall haben sich zwei benachbarte Gene miteinander vereinigt.

Das aus Anteilen der beiden ursprünglichen Gene zusammengesetzte Protein besitzt einen anderen Bestimmungsort innerhalb der Zellen – ein Effekt, der auch aus anderen Organismen wie dem Menschen bekannt ist. Die Folge einer solchen Genfusion sind Bakterienzellen, die besser an ihre Umgebung angepasst sind.

Änderungen im genetischen Code bestehender Gene – sogenannte Mutationen – können einen Organismus mit neuen Eigenschaften ausstatten. Auch die Verdopplung von Genen oder der Einbau zusätzlicher DNA-Abschnitte können seine Anpassungsfähigkeit erhöhen.

Gene können im Lauf der Evolution sogar komplett neu entstehen. Zuvor funktionslose Abschnitte des Erbguts werden dabei so verändert, dass sie die Vorlage für Proteine liefern. Ein weiterer bereits bekannter Mechanismus ist die Fusion zweier Gene, aus der dann ein neues Protein hervorgehen kann.

„Dieses Wissen beruht auf Erbgutvergleichen verschiedener Organismen. Da die Evolution meist sehr langsam arbeitet, lassen sich solche Veränderungen im Erbgut in der Regel nicht in Echtzeit beobachten – geschweige denn, wie sie das Überleben seines Trägers beeinflussen“, sagt Paul Rainey vom Max Planck Institut für Evolutionsbiologie.

Der Forscher konzentriert sich deshalb auf Bakterien. Diese vermehren sich nicht nur außerordentlich schnell, sie lassen sich auch auf kleinem Raum in riesiger Zahl im Labor züchten. Die dabei entstehenden Veränderungen im Erbgut können Forscher dann untersuchen und der Evolution so förmlich bei der Arbeit zusehen.

Rainey untersucht, wie das Bakterium Pseudomonas fluorescens neue Eigenschaften hervorbringt, mit denen es in den Kulturschalen seines Forschungslabors am besten überleben kann. Ursprünglich wachsen die Bakterien in flüssigem Kulturmedium. Mit der Zeit brauchen sie den darin enthaltenen Sauerstoff auf und bereiten so den Boden für eine neue Variante. Diese bilden Bakterienmatten an der Oberfläche, so dass sie Sauerstoff aus der Luft aufnehmen können. Diese Zellen lassen sich leicht an dem faltigen Aussehen ihrer Kolonien erkennen.

Auslöser der Mattenbildung sind Rainey und seinen Kollegen zufolge verschiedene Mutationen in Genen, die die Aktivität von Di-Guanylatzyklase-Enzymen hemmen. Diese Mutationen schalten Hemmstoffe aus, so dass die Di-Guanylatzyklasen aktiv werden können. Aber als die Forscher die hemmenden Signalwege unterbanden, stießen sie auf bislang unbekannte Mutationen, die die Bildung von Bakterienmatten ermöglichten. In einigen dieser Fälle ist das Di-Guanylatzyklase-Gen unter die Kontrolle eines anderen Promotors gelangt und wurde dadurch vermehrt produziert.

In manchen der neuen Bakterienzellen blieb die Aktivität des Gens jedoch unverändert. Eine Analyse der Mutationen in diesen Zellen ergab, dass diese Mutanten ein „chimäres“ Gen besitzen, das aus dem Di-Guanylatzyklase-Gen und einem benachbarten Gen zusammengesetzt ist.

Letzteres ist sonst in der Zellmembran aktiv. „Es muss also zu einer Fusion zweier Gene gekommen sein, deren Proteine sonst an unterschiedlichen Orten in der Zelle vorkommen“, erklärt Rainey. Das neue Protein besitzt eine Membrandomäne und ist damit in der Zellmembran verankert. Dadurch wird es aktiv.

Auch in anderen Organismen wechseln Proteine, die aus Genfusionen hervorgegangen sind, häufig ihren Bestimmungsort. So ist beim Menschen das sogenannte Kua-UEV-Gen das Resultat einer Fusion des Kua- und des UEV-Gens.

Das neue UEV-Protein kann sich nun an Membrane innerhalb der Zelle anlagern und neue Aufgaben übernehmen. Beim Menschen enthalten 64 Prozent der Gen-Familien für Mitochondrien-Proteine ein Gen für ein Protein, das anderswo in der Zelle aktiv ist. „Obwohl Fusionen von Genen in unseren Experimenten nur rund 0,1 Prozent der Fälle ausmachten, in denen Mutationen zu dem faltigen Zelltyp führten, könnten Fusionen in der Natur deutlich häufiger auftreten“, sagt Rainey.

Originalveröffentlichung:
Adaptive evolution by spontaneous domain fusion and protein relocalization
Andrew D. Farr , Philippe Remigi and Paul B. Rainey
Nature Ecology & Evolution, August 28, 2017

Kontakt:
Prof. Paul B. Rainey
MPI f. Evolutionsbiologie
Email: rainey@evolbio.mpg.de

Dr. Harald Rösch | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
Weitere Informationen:
http://www.mpg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neurobiologie - Die Chemie der Erinnerung
21.11.2017 | Ludwig-Maximilians-Universität München

nachricht Diabetes: Immunsystem kann Insulin regulieren
21.11.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

Raumfahrtkolloquium: Technologien für die Raumfahrt von morgen

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wasserkühlung für die Erdkruste - Meerwasser dringt deutlich tiefer ein

21.11.2017 | Geowissenschaften

Eine Nano-Uhr mit präzisen Zeigern

21.11.2017 | Physik Astronomie

Zentraler Schalter

21.11.2017 | Biowissenschaften Chemie