Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ewing Sarkom - Fatale Interaktion fördert Knochenkrebs

28.07.2015

LMU-Forscher zeigen erstmals beim Ewing Sarkom einen prinzipiellen Mechanismus auf, wie ein krankheitsförderndes Gen reguliert wird.

Das Ewing Sarkom ist ein bösartiger Knochenkrebs, der vor allem bei Kindern, Jugendlichen und jungen Erwachsenen auftritt. Ewing Sarkome sind durch eine einzige genetische Treibermutation charakterisiert, das Fusions-Onkogen EWSR1-FLI1, das durch eine spontane Mutation entsteht.

EWSR1-FLI1 alleine scheint aber nicht auszureichen, um die Tumore entstehen zu lassen. Nun dokumentieren Forscher um Dr. Thomas Grünewald, Leiter des Labors für Pädiatrische Sarkombiologie am Pathologischen Institut der LMU, gemeinsam mit Kollegen vom Institut Curie in Paris und dem National Cancer Institute in Bethesda erstmals, wie eine spontane somatische Mutation in Tumorzellen und eine angeborene genetische Suszeptibilitätsvariation, also eine genetische Varation, die für eine bestimmte Erkrankung empfänglich macht, interagieren und so die Entstehung des Ewing Sarkoms fördern.

Über ihre Ergebnisse, für die sie bereits mit dem Internationalen Forschungspreis der deutschen Sarkomkonferenz 2015 ausgezeichnet wurden, berichten sie aktuell in der Fachzeitschrift Nature Genetics.

Studie zeichnet sich durch integrativen Ansatz aus

Das Team um Thomas Grünewald hat zunächst mittels zielgerichteter Tiefensequenzierung der Keimbahn-DNA von mehreren hundert Ewing-Sarkom-Patienten und Probanden einer gesunden Kontrollgruppe eine detaillierte Karte aller genetischer Variationen in einer zuvor vermuteten genetischen Suszeptibilitätsregion erstellt. Den dadurch gewonnenen Katalog der angeborenen Risikovarianten haben sie mit Daten aus epigenetischen und funktionalen Analysen kombiniert.

Durch diesen integrativen Ansatz haben die LMU-Forscher entdeckt, dass eine bestimmte Suszeptibilitäts-Variante in der Keimbahn-DNA von Ewing Sarkom-Patienten von entscheidender Bedeutung ist, damit die zusätzliche somatische Treibermutation EWSR1-FLI1, die nur in den Tumorzellen vorkommt, ihre volle Wirkung entfalten kann. „Unsere Arbeit ist die erste formale Dokumentation einer spezifischen und direkten Interaktion einer somatischen Treibermutation mit einer krankheitsbegünstigenden Keimbahnvariation“, sagt Thomas Grünewald.

Tumor nutzt embryonalen Signalweg

Die Forscher haben durch die Untersuchung der Keimbahnvariationen herausgefunden, dass das Gen EGR2 eine wichtige Rolle beim Wachstum und womöglich bei der Entstehung von Ewing Sarkomen spielt, da es in entscheidende Signalwege eingebunden ist. EGR2 spielt im embryonalen Alter eine bedeutsame Rolle für die Entwicklung der Gehirn- und Knochenvorläuferzellen, indem es die Zellteilung reguliert.

Eine bestimmte Variation in einem regulatorischen Element von EGR2 ist in dem Moment fatal, in dem spontan die Treibermutation EWSR1-FLI1 auftritt: Dann kommt es in den Ewing-Sarkomzellen zur massiven Hochregulation von EGR2 und zum Anschalten eines normalerweise abgeschalteten embryonalen Proliferations- und Stammzellprogramms. Das begünstigt das Auftreten der Erkrankung bei Menschen, die die genetischen Risikovarianten tragen, und fördert eventuell einen aggressiveren Krankheitsverlauf.

Dieser Mechanismus erklärt womöglich auch, warum überdurchschnittlich häufig Kinder und Jugendliche europäischer Herkunft am Ewing Sarkom erkranken. Mithilfe der Daten aus dem 1000-Genom-Projekt, das das Erbgut von mittlerweile mehreren tausend Menschen umfasst, untersuchten die Forscher die Häufigkeit der entdeckten Variation in verschiedenen Populationen:

„Circa 81 Prozent der Europäer tragen mindestens ein Risikoallel in ihrer Keimbahn-DNA, während es bei Afrikanern nur selten vorkommt. Das Allel kommt jedoch nur dann zum Tragen, wenn zusätzlich die interagierende Treibermutation EWSR1-FLI1 in einer somatischen Zelle auftritt. Glücklicherweise ist diese liaison dangereuse recht selten“, sagt Grünewald.

Der LMU-Mediziner und seine Kollegen hoffen, dass sich ihre Ergebnisse therapeutisch nutzen lassen. In Zellkulturen und im Mausmodell konnten die Forscher bereits zeigen, dass sich die Tumorzellen nicht weiter entwickeln, wenn der von EGR2 regulierte Signalweg ausgeschaltet wird.

Publikation:
Thomas G. P. Grünewald u.a.:
„Chimeric EWSR1-FLI1 regulates the Ewing sarcoma susceptibility gene EGR2 via a GGAA-microsatellite“
In: Nature Genetics, doi: 10.1038/ng.3363

Kontakt:
Dr. med. Thomas Grünewald, Ph.D.
Tel.: 089 2180 - 737 16
E-Mail: Thomas.Gruenewald@med.uni-muenchen.de

Luise Dirscherl | Ludwig-Maximilians-Universität München
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kupferhydroxid-Nanopartikel schützen vor toxischen Sauerstoffradikalen im Zigarettenrauch
30.03.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung
30.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE