Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Evolutionsforschung - Die Physik am Anfang des Lebens

30.04.2013
Nach der Entstehung der Erde bildeten sich im Ur-Ozean aus einzelnen Molekülen nach und nach komplexe genetische Informationen. Physiker haben nun gezeigt, wie ein einfacher Temperaturgradient diesen Prozess in Gang gesetzt haben könnte.

Alles Leben fängt einmal klein an. So war es schon zu Beginn unseres Planeten, als sich aus einzelnen Atomen und kleinen Molekülen langsam komplexe Strukturen entwickeln konnten. Die wichtigste Verbindung war damals vermutlich die Ribonukleinsäure (RNA). Dieses lange Polymer kann ähnlich einem Enzym erste biochemische Reaktionen und seine eigene Synthese katalysieren. Zugleich ist es in der Lage, wie die erst später entstandene DNA genetische Informationen zu speichern.

Noch ist aber unklar, wie die allerersten RNA-Polymere entstanden sind. Die erste RNA-Struktur, welche RNA vervielfältigen kann wird auf eine Länge von mindestens 200 RNA-Bausteinen (Nukleotide) geschätzt, die sich ohne Katalysatoren zusammengesetzt haben müssen. Bisher konnten Wissenschaftler im Reagenzglas unter urzeitlichen Bedingungen aber nur Ketten von etwa 20 Nukleotiden bilden.

Gesteinspore als Mini-Labor

LMU-Physiker um Professor Dieter Braun und Professor Ulrich Gerland, die beide dem Exzellenzcluster „Nanosystems InitativeMunich" (NIM) angehören, haben nun gezeigt, wie diePhysik das Problem der zu kurzen Polymere gelöst haben könnte – und sind damit dem Geheimnis über den Ursprung des Lebens ein gutes Stück näher gekommen.

Die Forscher entwickelten zunächst ein theoretisches Modell. Hiermit konnten siezeigen, dass ein einfaches Temperaturgefälle ausreicht, um die nötigen Bausteine aufzukonzentrieren und selektiv die Bildung von langen Polymeren zu ermöglichen. Dabei gingen sie von einemrealistischen Urzeit-Szenario aus: Eine mit Meerwasser gefüllte Gesteinspore liegt in der Nähe einer Wärmequelle, wie zum Beispiel einer heißen Tiefseequelle. Auf diese Weise istdie zugewandte Seite der Pore deutlich wärmer alsdie andere. Das so entstandene Temperaturgefälle erzeugt eine kreisförmige Bewegung der Flüssigkeit zwischen der heißen und der kalten Seite. Zusätzlich drückt es die darin enthaltenen Biomoleküle zur kalten Seite durch einen Effekt, der Thermophorese genannt wird.
„Die Bewegung der Flüssigkeit und die Thermophoresekombinieren sich zu einer thermalen Falle, dielange Polymere besser akkumuliert als kurzeund somit ein chemisches Ungleichgewicht bewirkt“, erklärt Christof Mast, Erstautor der Studie. „Da die Polymerisierung der Ketten allerdings auch von ihrer lokalen Konzentration abhängt, erhöht die Falle die Wahrscheinlichkeit, dass diese langen Polymere immer länger werden.Beide Effekte verstärken sich überexponenziell.“

Dem Urozean abgeschaut

Dieses Modell konnten die Münchner Physiker auch durch Experimente belegen: Dabei stellten sie die Pore in Form einer feinen Glaskapillare nach und sorgten für einen Temperaturgradienten von zehn Kelvin. Dem Meerwasser entsprach eine einfache Salzlösung. Statt RNA-Nukleotiden setzten siekurze DNA-Abschnitte als Bausteine ein, die reversibel miteinander polymerisieren können. DNA anstelle von RNA wurde verwendet, weil entsprechend der langen Evolutionsdauer im Urozean die Bildung von ausreichend langen RNA-Polymeren selbst unter optimalen Laborbedingungen hunderteJahre dauern würde. Da sich die Polymerisation von RNA und der Versuchs-DNA jedoch prinzipiell nicht voneinander unterscheiden, bestätigte dieser Versuchsansatz das theoretische Modell im gleichen Maße.

„Die Physik hinter einem einfachen Temperaturgradient in einer Pore reicht also aus, auch die Polymerisation von sehr langen RNA Polymeren zu ermöglichen“, fasst Professor Dieter Braun die Ergebnisse zusammen. „Durch diese Forschungsarbeit ist ein wichtiger Zwischenschritt für den Ursprung des Lebens erstmalig demonstriert.“

Publikation:
Escalation of Polymerization in a Thermal Gradient.Christof B. Mast, SeverinSchink, Ulrich Gerland and Dieter Braun. PNAS online 30. April 2013

Kontakt:
Prof. Dieter Braun
Systems Biophysics
Ludwig-Maximilians-Universität München
Amalienstr. 54
80799 München
Tel: 089 - 2180 2317
dieter.braun@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.lmu.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ionen gegen Herzrhythmusstörungen – Nicht-invasive Alternative zu Katheter-Eingriff
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Leibwächter im Darm mit chemischer Waffe
20.01.2017 | Max-Planck-Institut für chemische Ökologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ionen gegen Herzrhythmusstörungen – Nicht-invasive Alternative zu Katheter-Eingriff

20.01.2017 | Biowissenschaften Chemie

Ein neuer Index zur Diagnose einer nichtalkoholischen Fettlebererkrankung

20.01.2017 | Biowissenschaften Chemie

Das Cockpit für Kühlgeräte

20.01.2017 | Energie und Elektrotechnik