Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Evolutionsbiologie: Wie die Zellen zu ihren Kraftwerken kamen

22.06.2017

Komplexe Zellen, so genannte Eukaryoten, besitzen neben dem Zellkern weitere abgeschlossene Zellbestandteile. Dazu gehören Mitochondrien, die Zellkraftwerke, welche früher eigenständige Bakterien waren. Wie es dazu kam, dass eine Zelle eine andere in sich aufnahm, hinterfragten Wissenschaftler vom Institut für Molekulare Evolution der Heinrich-Heine-Universität Düsseldorf (HHU) zusammen mit Kollegen aus den Niederlanden und der Slowakei. Ihre Ergebnisse publizierten sie kürzlich in der Fachzeitschrift Microbiology and Molecular Biology Reviews.

Zu Beginn des Lebens existierten nur einfache Arten von Zellen, so genannten Prokaryoten, die keine größeren inneren Zellstrukturen besitzen. Zu dieser Art von Zellen gehören die Bakterien und die Archaeen.


Der Ursprung der komplexen, eukaryotischen Zelle geht auf die Integration eines Bakteriums in ein Archaeon zurück. Daraus entstanden die heutigen Mitochondrien, die Kraftwerke der Zellen. Es gibt zwei grundsätzliche Modelle, wie diese Integration geschehen sein kann: (A) der Wirt, das Archaeon, entwickelte zuerst einen gewissen Grad an Komplexität, welcher die Aufnahme des anderen Bakteriums durch Phagocytose ermöglichte. (B) Die erste enge Interaktion der beiden Partner basiert auf Stoffaustausch (Syntrophie). Erst die Integration des Bakteriums (blau) in das Archaeon (rot) stellte Energie im Überfluss zur Verfügung, welche die Evolution der Komplexität antrieb. (Abbildungen: Sven Gould)


Prokaryoten, wie gramnegative Bakterien und Archaeen, sind bekannt dafür, Vesikel von ihrer Plasmamembran in die Umwelt abzuschnüren. Pathogene Bakterien tun dies beispielsweise bei der Infektion von Humanzellen. Eukaryotische Zellen können dies auch, sie können aber auch Material aus der Umwelt aufnehmen und Vesikel nach innen, in ihr Zytosol abschnüren. Solche Prozesse finden zum Beispiel in Darmzellen statt, um Nahrung aufzunehmen. Wie Eukaryoten diese Fähigkeit entwickelt haben, steht im Fokus der aktuellen Arbeit.

Vor etwa 2 Milliarden Jahren nahm dann ein Archaeon ein Bakterium in sich auf und integrierte dieses als Zellorganell. Damit begann die Evolution komplexer Zellen, der Eukaryoten, welche innere Kompartimente wie einen Zellkern und das Mitochondrium besitzen und aus welchen alle komplexen Lebewesen, wie auch Tiere und Pflanzen evolvierten.

Unklar ist aber, wie genau diese Integration ablief. Allen bekannten Prokaryoten – Archaeen wie Bakterien – fehlt nämlich eine entscheidende Fähigkeit der Eukaryoten, die sogenannte „Phagocytose“. Damit können Eukaryoten größere Partikel aus ihrer Umwelt in sich aufnehmen.

Wichtigstes Beispiel hierfür sind die „Makrophagen“, die Fresszellen unseres Immunsystems: Sie nehmen über die Phagocytose schädliche Bakterien in sich auf, „verdauen“ und zerstören sie dadurch.

Die HHU-Forscher Prof. Dr. William Martin und PD Dr. Sven Gould gehen mit ihrem Team am Institut der Molekulare Evolution sowie Kollegen aus Utrecht, Rotterdam und Bratislava in ihrer aktuelle Arbeit der Frage aus historischem, physiologischem und zellbiologischem Blickwinkel kritisch nach.

Sie kommen in ihrer in Microbiology and Molecular Biology Reviews veröffentlichten Arbeit zu dem Schluss, dass die aktuelle Datenlage und die Art und Weise, wie Prokaryoten grundsätzlich leben, eine Rolle der Phagocytose beim Ursprung der Eukaryoten nicht unterstützt und eine solche Rolle auch nicht nötig war: Alternativen zur Phagocytose für das Eindringen des einen in den anderen Prokaryoten sind bereits beschrieben.

Darüber hinaus postulieren die Wissenschaftler, dass jegliches prokaryotische Leben, welches man auch in Zukunft noch finden wird, nicht die Komplexität einer eukaryotischen Zelle – etwa auch die Fähigkeit zur Phagocytose – besitzen wird. Dr. Gould zur Bedeutung der Ergebnisse: „Unsere Arbeit ist ein breit aufgestelltes Referenzwerk, an welchem sich zukünftige Forschungen zum Ursprung der Eukaryoten und zur Komplexizität prokaryotischer Biologie orientieren können.“

Originalpublikation

Martin WF, Tielens AGM, Mentel M, Garg SG, Gould SB. 2017, The physiology of phagocytosis in the context of mitochondrial origin, Microbiol Mol Biol Rev 81:e00008-17

Weitere Informationen:

http://mmbr.asm.org/content/81/3/e00008-17

Dr.rer.nat. Arne Claussen | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.hhu.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics