Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Evolutionärer Bestseller in der Bildverarbeitung

10.11.2010
Nervenzellen in den Augen von Fliegen und Wirbeltieren spalten optische Informationen ähnlich auf

Das Auge ist nicht nur eine Linse, die Bilder aufnimmt und in elektrische Signale umwandelt. Wie bei allen Wirbeltieren trennen auch im menschlichen Auge Nervenzellen das Gesehene bereits in der Netzhaut in verschiedene Bildkanäle. Diese vorsortierten Informationen werden dann als parallele Bildsequenzen an das Gehirn weitergeleitet. Dass Fruchtfliegen optische Informationen ganz ähnlich verarbeiten, fanden jetzt Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried heraus. Vermutlich ist diese Art der Verschaltung besonders energiesparend und wird daher über die verschiedensten Tierarten hinweg beibehalten. (Nature, 11. November 2010)


Jedes Einzelauge des Fliegen-Facettenauges nimmt ON- und OFF-Kontraständerungen wahr. Diese Information wird jedoch direkt nach dem Einzelauge aufgespalten (blauer Eingangspfeil). Die L1-Zellen leiten nur noch Informationen über ON-Kanten (\"Licht an\"), die L2-Zellen nur über OFF-Kanten (\"Licht aus\"), an die Ausgangszelle (grün) weiter. Bild: Max-Planck-Institut für Neurobiologie / Schorner

Wie gelangt die Welt in den Kopf? Dies ist keine triviale Frage, denn für viele Tierarten ist "Sehen" einer der wichtigsten Sinne. In jeder Sekunde nehmen die Augen eine Vielzahl an Eindrücken auf, die von den Lichtsinneszellen in elektrische Signale umgewandelt werden. Bei Wirbeltieren beginnt die Verarbeitung der Bilder dann bereits in der Netzhaut der Augen. Hier spalten die Nervenzellen das Gesehene vor seiner Weitergabe an das Gehirn in Bilder mit unterschiedlichem Informationsgehalt auf.

Sehen verstehen mit Fruchtfliegen

Um so etwas Komplexes wie "Sehen" zu verstehen, untersuchen Wissenschaftler ein etwas einfacheres, aber äußerst effizientes System - das Gehirn von Fruchtfliegen. Trotz seiner winzigen Größe überwiegen die Vorteile: Fliegen sind Meister in der visuellen Verarbeitung, die Anzahl der beteiligten Nervenzellen ist überschaubar, sodass jede einzelne Zelle untersucht werden kann, und genetische Werkzeuge ermöglichen es, einzelne Zellen zu blockieren und so ihre Rolle im System zu analysieren.

Nun fanden Wissenschaftler des Max-Planck-Instituts für Neurobiologie erstaunliche Parallelen in der neuronalen Verarbeitung zwischen Fruchtfliegen und Wirbeltieren. Denn auch die Fliege leitet Bilder bereits direkt nach den Sinneszellen in verschiedenen Bildkanälen weiter. Die Informationen werden dann über eine Reihe anderer Zellen an große, bewegungsempfindliche Nervenzellen weitergeleitet. Diese "Ausgangszellen" des Bewegungs-Sehsystems sind für die visuelle Flugsteuerung zuständig.

Licht an und aus im Fliegenkino

Dem frühen Auftrennen in verschiedene Bilder kamen die Wissenschaftler auf die Spur, indem sie bestimmte Zellen mithilfe der Gentechnik blockierten. Diesen Fliegen zeigten sie dann in einer LED-Arena bewegte Streifenmuster, während sie die elektrischen Reaktionen der Ausgangszellen aufzeichneten. Die verschiedenen Kontrastveränderungen, die durch die Streifenbewegung auftreten, werden von den Fotorezeptoren des Auges wahrgenommen. Direkt hinter jeder Sinneszelle liegen jedoch gleich fünf Nervenzellen, die Laminazellen L1 bis L5. "Wir haben uns schon lange gefragt, warum es so viele Zellen sind, welche davon Informationen an das Bewegungs-Sehsystem weiterleiten, und was das für Informationen sind", berichtet Alexander Borst, der Leiter der Studie. Also setzte sein Team jeweils einzelne dieser Laminazellen außer Gefecht, während die Fliege bewegte Muster sah. Die Experimente ergaben, dass die Zellen L1 und L2 die Haupteingangskanäle in das Bewegungssehsystem der Fliege sind. Das Spannende dabei: Die Zellen übertragen ganz nur bestimmte Teilinformationen. So reagiert L1 nur, wenn eine Dunkel-Hell-Kante vorbeizieht, "Licht an", während L2 nur die Information über eine sich bewegende Hell-Dunkel-Kante, also "Licht aus", überträgt. Dies ist eine eindeutige Parallele zum Wirbeltierauge, wo sogenannte ON- und OFF-Bipolarzellen ebenfalls nur auf gerichtete Kontrastveränderungen reagieren.

Energiesparen quer durchs Tierreich

"Es kann kein Zufall sein, dass wir dieses Aufspalten von Kontrastinformation bei allen Wirbeltieren und jetzt auch bei Fliegen finden", vermutet Alexander Borst. Der Neurobiologe hat auch schon eine Theorie, warum diese Verschaltung von der Evolution so konsequent beibehalten wurde: Das Gehirn spart auf diese Weise Energie. Würde nur eine Zelle die Information über die verschiedenen Kontraständerungen weiterleiten, müsste sie eine Grundspannung halten, die sich bei "Licht an" verstärkt und bei "Licht aus" abschwächt. Solch eine Grundspannung kostet Energie. Zwei Zellen zu haben ist daher effizienter, denn sie brauchen jeweils nur dann aktiv zu werden, wenn "ihre" Kontraständerung auftritt.

Originalveröffentlichung:

Maximilian Jösch, Bettina Schnell, Shamprasad Varija Raghu, Dierk F. Reiff & Alexander Borst
ON- and OFF-pathways in Drosophila motion vision
Nature, online Veröffentlichung vom 11. November 2010
Weitere Informationen erhalten Sie von:
Dr. Stefanie Merker, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: +49 89 8578-3514
E-Mail: merker@neuro.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einblick ins geschlossene Enzym
26.06.2017 | Universität Konstanz

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblick ins geschlossene Enzym

26.06.2017 | Biowissenschaften Chemie

Laser – World of Photonics: Offene und flexible Montageplattform für optische Systeme

26.06.2017 | Messenachrichten

Biophotonische Innovationen auf der LASER World of PHOTONICS 2017

26.06.2017 | Messenachrichten