Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Den evolutionären Zufall im Griff

14.09.2009
Ein Modell erfasst den Zufall in der Evolution - und hilft auch chemische Reaktionen oder die Ausbreitung von Seuchen zu beschreiben

Dass die Evolution nicht allein dem Darwinschen Prinzip von Mutation und Selektion folgt, sondern auch von zufälligen Gegebenheiten beeinflusst wird, ist Biologen seit Langem bekannt. Doch bislang war es unmöglich, den Zufallseinfluss auf die Evolution quantitativ zu erfassen. Ein mathematisches Verfahren eines Forschers vom Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen macht dies nun möglich. Es lässt sich auch auf die Ausbreitung von Seuchen und von Verbrennungsfronten in einem reaktiven Gasgemisch und sogar in der Teilchenphysik anwenden. (Physical Review Letters 103, 108103, 2009)


Mutanten im Vormarsch: Als Wellenfront breitet sich eine genetische Variante, symbolisiert durch die roten Punkte aus. In dem abgebildeten Fall bringt die Mutation nur einen leichten Vorteil, so dass ihre Ausbreitung stark von Zufallsprozessen abhängt und sie sich nur langsam durchsetzt. Bild: MPI für Dynamik und Selbstorganisation / Hallatschek

Wie schnell verläuft die Evolution? Das ist eine der Forschungsfragen, die sich der Physiker Oskar Hallatschek vom Max-Planck-Institut für Dynamik und Selbstorganisation stellt. Er versucht, sie mithilfe von Formeln und Computersimulationen zu beantworten. In seinen Computermodellen gibt es Individuen, die eine Veränderung ihres Erbgutes, eine so genannte Mutation, tragen, die ihnen einen Vorteil verschafft. Deshalb haben sie bessere Überlebenschancen als ihre Artgenossen und die Mutation breitet sich von Generation zu Generation immer weiter unter den virtuellen Wesen aus.

Das Computermodell zeigt, dass die Mutation wie eine Welle über das von den Individuen bevölkerte Gebiet schwappt. Die Geschwindigkeit dieser Welle hängt von zwei Faktoren ab. Erstens vom Ausmaß des Vorteils, den die Mutanten haben. Je mehr die Mutation die Überlebenschance ihrer Träger erhöht, desto schneller läuft die Welle. Der zweite Faktor ist der Zufall: "Die Ausbreitung der Mutation hängt davon ab, wer wann mit wem Nachkommen zeugt", erläutert Hallatschek. Das Kontaktknüpfen unterliege dem Zufall. Hallatschek vergleicht es mit Münzenwerfen. Es gibt nämlich zwei Möglichkeiten: Entweder ein Mutant ist an dem Kontakt beteiligt (Kopf) oder nicht (Zahl). Entsprechend wird die Mutation weitergegeben oder nicht. Statistisch gesehen erwartet man beim Münzenwerfen ein Fifty-Fifty-Verhältnis von Kopf und Zahl. Doch je weniger Würfe man macht, desto mehr neigt das Ergebnis dazu, stark von dieser Erwartung abzuweichen. Bei nur zwei Würfen ist es nicht unwahrscheinlich, dass beide Zahl liefern.

Ähnlich ist es in der Gesellschaft der Computerwesen. Wenn die Bevölkerungsdichte und damit das Kontaktnetzwerk dünn ist, entspricht das dem Fall weniger Münzwürfe. "Dann schwankt die Anzahl der Mutanten von einer Gruppe benachbarter Individuen zur nächsten und von einer Generation zur nächsten deutlich stärker als bei einem dichten sozialen Netzwerk", sagt Hallatschek. Diese zufälligen Fluktuationen bremsen die Ausbreitung der Mutation, wie die Simulationen zeigten.

Darüber hinaus verändern sie die Form der Wellenfront. Zum einen führen sie dazu, dass ein Gebiet nicht gleichmäßig von einem mutantenfreien Zustand in einen gemischten übergeht, wenn ihn die Welle überrollt. Vielmehr treten dabei starke Schwankungen auf. Diese können soweit gehen, dass die Mutanten für kurze Zeit wieder vollständig aus einem Teilgebiet verschwinden, bevor sie erneut auftauchen. Die Wellenfront kann also gleichsam in Vorwellen und Hauptwelle aufspalten. Zum anderen zeigte sich, dass die Länge der Wellenfront, also die Strecke zwischen einem Gebiet, das die Welle gerade erfasst, bis zu einem, das gerade vollständig überrollt wurde, deutlich stärker variiert als bei einer vom Zufall ungestörten Wellenfront.

Hallatschek gelang es nicht nur, diese Phänomene im Computer zu simulieren, sondern auch, sie quantitativ zu beschreiben und damit besser zu verstehen. Bislang war es nur möglich, die Wellenausbreitung der Mutation für den Fall zu berechnen, dass das Zufallselement im Vergleich zum Selektionsvorteil der Mutanten eine geringe Rolle spielt, wenn also die Mutation gleichsam eine große Durchsetzungskraft hat. Dafür lösten Wissenschaftler die so genannte zufallsabhängige Fisher-Kolmogorov-Petrovsky-Piscounov-Gleichung (SFKPP), die Wachstum, Ausbreitung und Zufallsfluktuationen von Lebewesen, aber auch von chemischen Reagenzien beschreibt. Dabei vernachlässigten sie allerdings deren zufallsabhängigen Term.

Doch dieser Term lasse sich nicht immer vernachlässigen, betont Hallatschek. "Denn die meisten in der Natur vorkommenden Mutationen bringen nur einen geringen Selektionsvorteil", sagt der Physiker. In diesen Fällen spiele der Zufall eine vergleichsweise große Rolle.

Dank eines mathematischen Verfahrens namens Störungsrechnung hat Hallatschek die SFKPP-Gleichung für solche Fälle gelöst. Dabei fand er heraus, dass die Geschwindigkeit der Mutanten-Welle proportional zur Wurzel aus der Bevölkerungsdichte ansteigt. Darüber hinaus zeigte er, dass die Längen der Wellenfronten einer Häufigkeitsverteilung folgen, die sich mit einem Potenzgesetz beschreiben lässt. Des Weiteren entdeckte er, dass das Aufspalten der Wellenfront einem zufallsabhängigen Prozess namens random walk folgt.

"Dieses quantitative Verständnis macht es jetzt möglich, auch andere Phänomene zu beschreiben, die der SFKPP-Gleichung folgen", sagt Hallatschek. Daher zeigt sich der Physiker überzeugt, dass Wissenschaftler sein Verfahren nutzen werden. "Epidemiologen können nun genauer beschreiben, wie sich Krankheiten ausbreiten", sagt Hallatschek. Außerdem könnten Chemiker den Ablauf von Reaktionen mithilfe des Verfahrens studieren. Das Analogon zum Vorteil einer Mutation sei hier die Reaktivität zweier Substanzen. Sogar ein Teilchenphysiker habe Interesse an seiner Arbeit gezeigt, berichtet der Forscher. Denn er benutze eine zur SFKPP ähnliche Gleichung zur Beschreibung von Streuexperimenten mit Elementarteilchen.

Zusammen mit seiner siebenköpfigen Arbeitsgruppe möchte Hallatschek mit seiner Methode die Evolution des Menschen in den letzten 200.000 Jahren erforschen. Dabei will er anhand von genetischen Daten die wellenartige Ausbreitung vorteilhafter Mutationen verstehen.

Originalveröffentlichung:

Oskar Hallatschek, K.S. Korolev
Fisher Waves in the Strong Noise Limit
Phys. Rev. Lett. 103, 108103 (2009)
Weitere Informationen erhalten Sie von:
Dr. Oskar Hallatschek
Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen
Tel.: +49 551 5176-670
E-Mail: oskar.hallatschek@ds.mpg.de

Dr. Felicitas von Aretin | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zebras: Immer der Erinnerung nach
24.05.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Wichtiges Regulator-Gen für die Bildung der Herzklappen entdeckt
24.05.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten