Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Evolutionäre Logistik – Wie sich die ersten Moleküle gefunden haben könnten

07.05.2010
Vor mehr als drei Milliarden Jahren entstand erstes Leben auf der Erde. Damals bildeten sich vermutlich in den Ozeanen erstmals komplexere chemische Verbindungen, aus denen sich dann die ersten Einzeller zusammensetzten.

Dazu aber mussten sich die nur gering konzentrierten und vermutlich im Meerwasser gelösten Strukturen erst einmal finden. Sicher ist, dass bereits hier eine Form der Selektion beginnt, die laut Darwin die Grundlage der Evolution bildet.

Denn nur wo optimale Bedingungen herrschen, können sich neue Strukturen bis hin zu ersten Lebewesen bilden. Die LMU-Physiker Christof Mast und Professor Dieter Braun, die auch dem Exzellenzcluster „Nanosystems Initiative Munich“ (NIM) angehören, haben nun das grundlegende Prinzip dieses Prozesses im Labor nachgebildet. Dabei konnten die Wissenschaftler in ihrem Versuch in Lösung befindliches Erbgut allein durch einen einfachen Temperaturunterschied aufkonzentrieren und zudem vervielfältigen. „Das ist relevant, weil in Steinporen in der Nähe warmer Unterwasserquellen der Urmeere vermutlich ähnliche thermische Verhältnisse herrschten – und dort ja die ersten Lebewesen entstanden sein könnten“, sagt Braun. „Diese Untersuchung ist für uns aber nur ein erster Schritt. Als Physiker interessiert uns, dass und wie ein Gleichgewicht gestört werden muss – hier etwa die gleichförmige Verteilung der Moleküle – um Leben entstehen zu lassen.“ (Physical Review Letters online, 07. Mai 2010)

Das Leben auf der Erde nahm seinen Anfang vor mehr als drei Milliarden Jahren. Welche Umstände und Prozesse im Einzelnen dazu geführt haben, ist noch unklar. Sehr wahrscheinlich sind die ersten biologisch aktiven Einheiten im Wasser der Urmeere entstanden, möglicherweise in der Nähe heißer Unterwasserquellen. Fraglich ist bei diesem Szenario unter anderem, wie sich die gering konzentrierten Moleküle finden konnten. Die LMU-Physiker Christof Mast und Professor Dieter Braun stellten diese frühen Bedingungen mithilfe eines Temperaturgradienten nach: sie befüllten eine hauchdünne Glaskapillare mit Puffer und DNA-Molekülen. Ein Infrarot-Laserstrahl war auf den Mittelpunkt der Kapillare fokussiert, so dass sich in der Flüssigkeit ein Temperaturgradient bildete. Durch die schnelle Bewegung des Lasers entlang der Kapillaren entstand gleichzeitig eine Konvektionsbewegung, die die DNA in den kalten und warmen Bereich der Kapillare transportierte.

Das Prinzip der „Molekül-Falle“ basiert darauf, dass die doppelsträngigen DNA-Moleküle problemlos vom warmen in den kühleren Bereich wandern. Die Diffusion zurück in den wärmeren Abschnitt gelingt ihnen jedoch deutlich langsamer. Einige Moleküle bleiben auch ganz zurück und sammeln sich punktuell in der kühleren Region. Hauptverantwortlich dafür ist das Prinzip der Thermophorese, der Bewegung von z.B. Biomolekülen entlang eines Temperaturgefälles. Wie sehr sich diese Wandergeschwindigkeit von Molekülen durch Temperaturgradienten verändert, ist bei jeder Verbindung unterschiedlich und deren typisches Merkmal. So strömen beispielsweise das Lösungsmittel und auch die einzelsträngigen DNA-Moleküle leichter wieder zurück in den durch Laserstrahlung erwärmten Bereich.

Der Temperaturgradient ermöglicht neben der Konzentration doppelsträngiger DNA auch deren Replikation. Um sich verdoppeln zu können, müssen sich die Moleküle zunächst in ihre beiden Stränge teilen. Dies geschieht durch Aufschmelzen bei rund 90°C in der wärmeren Zone der Versuchskapillare. Die Replikation der beiden Hälften zu zwei neuen doppelsträngigen DNA- Molekülen kann jedoch erst stattfinden, sobald sie durch den Konvektionsstrom in den kühleren Bereich transportiert werden. Zudem muss dem Versuchsansatz das Enzym Polymerase zugegeben werden, das für die Replikation der Erbmoleküle essentiell ist. Sowohl das Aufschmelzen der DNA als auch die Verdopplung konnten die Münchner Physiker in ihrem Modell der „Molekül-Falle“ nachweisen. Wobei durch die Zugabe des Enzyms Polymerase die ersten Schritte auf dem Weg zum Leben nicht ganz realistisch nachgestellt sind. Für die Bildung des Enzyms müssten damals nämlich bereits lange DNA-Moleküle und ein Translationsmechanismus hin zum Protein vorhanden gewesen sein.

„Durchaus denkbar ist jedoch die Entstehung und Replikation von RNA“, so Christof Mast. Diese Verbindung ist der Erbsubstanz DNA chemisch sehr ähnlich und benötigt zur Vervielfältigung nicht zwingend die Hilfe eines Enzyms.

Den Wissenschaftlern zufolge lassen sich über das Prinzip der Molekül-Falle auch aus einer Mischung verschiedener Moleküle heraus sehr effizient nur einzelne Molekültypen gezielt vervielfältigen. Denn jede Verbindung wandert in einem Temperaturgradienten unterschiedlich und über verschiedene Versuchsparameter haben die Wissenschaftler Einfluss darauf, welche aufkonzentriert werden.

Die Forscher haben den ersten Schritt hin zu einem minimalen Darwin'schen Prozess gezeigt: während sich die DNA repliziert, fängt die Molekülfalle die neuen doppelsträngigen Moleküle ein und schützt sie vor der Diffusion in die umliegende Umgebung. Damit wurde gezeigt, dass die Falle in ein und derselben Kammer Replikation und Selektion beherbergen kann. „Die Nichtgleichgewichtsbedingungen sind zentral in unserem Experiment“, erklärt Dieter Braun, „weil wegen des zweiten Hauptsatzes der Thermodynamik nur so Struktur und damit Lebewesen aufgebaut werden können.“ Und die bisherigen Versuche sind laut Dieter Braun erst der Anfang: „Evolution ist eine universale Antwortmaschine, an die man allerlei Fragen stellen kann. Diese Dynamik wollen wir langfristig im Labor nachbauen.“

Publikation:
„A Thermal Trap for DNA Replication”,
Christof B. Mast and Dieter Braun,
Physical Review Letters, 07. Mai 2010
Article ID: LH11815
Ansprechpartner:
Prof. Dr. Dieter Braun
Systems Biophysics, LMU
Tel.: 089 / 2180 – 2317
E-Mail: dieter.braun@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.lmu.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zellen auf Wanderschaft: Falten in der Zellmembran liefern Material für nötige Auswölbungen
23.11.2017 | Westfälische Wilhelms-Universität Münster

nachricht Neues Verfahren zum Nachweis eines Tumormarkers in bösartigen Lymphomen
23.11.2017 | Wilhelm Sander-Stiftung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungsnachrichten

Seminar „Leichtbau im Automobil- und Maschinenbau“ im Haus der Technik Berlin am 16. - 17. Januar 2018

23.11.2017 | Seminare Workshops

Biohausbau-Unternehmen Baufritz erhält von „ Capital“ die Auszeichnung „Beste Ausbilder Deutschlands“

23.11.2017 | Unternehmensmeldung