Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Evolution der sexuellen Fortpflanzung

27.09.2012
Wie ist die sexuelle Fortpflanzung entstanden? Über diese Frage gibt es in der Wissenschaft unterschiedliche Ansichten. Jetzt haben Forscher aus Würzburg, Kiel und Lyon Spuren entdeckt, die der Diskussion ein Ende setzen könnten.

Jeder Organismus hat das Bestreben, sich fortzupflanzen und das eigene genetische Material an die nächste Generation weiterzugeben. Aus der sogenannten ungeschlechtlichen Fortpflanzung, bei der ein genetisch identischer Abkömmling von einem Lebewesen abstammt, entstand im Laufe der Evolution die sexuelle Vermehrung.


Der Süßwasserpolyp Hydra. In seinem Erbgut stießen Wissenschaftler auf den Hinweis, dass die sexuelle Fortpflanzung ein einmaliges Ereignis in der Evolution war.

Foto: Johanna Fraune

Voraussetzung dafür war die Entwicklung zweier unterschiedlicher Geschlechtszellen, deren Erbgut in der nächsten Generation ausgetauscht und neu kombiniert werden kann. Nachkommen, die aus geschlechtlicher Fortpflanzung durch die Verschmelzung einer Eizelle und eines Spermiums hervorgehen, besitzen deshalb eine einzigartige Kombination väterlicher und mütterlicher Gene.

Die Körperzellen der meisten Lebewesen besitzen einen doppelten Chromosomensatz, „diploid“ in der Fachsprache genannt. Damit dieser über die Generationen hinweg erhalten bleibt, wird in einer speziellen Form der Zellteilung – der Meiose – der Chromosomensatz der Geschlechtszellen bei ihrer Reifung halbiert, sie sind dann haploid. Durch die Fusion zweier haploider Geschlechtszellen bei der sexuellen Fortpflanzung wird der ursprüngliche diploide Chromosomensatz in dem Embryo wiederhergestellt.

Streit um die Entstehung der Meiose

Obwohl die Meiose in allen Lebewesen, die sich sexuell fortpflanzen, sehr ähnlich verläuft, sind die Entstehungsgeschichte und der evolutive Ursprung dieses Prozesses noch unklar. Das hat vor allem einen Grund: Der Synaptonemal-Komplex, eine Struktur, die dafür verantwortlich ist, dass der doppelte Chromosomensatz während der Meiose fehlerfrei halbiert wird, ist in verschiedenen entwicklungsbiologischen Modellorganismen aus scheinbar nicht-verwandten Proteinen aufgebaut.

„Diese Tatsache wurde lange als Hinweis für die Hypothese gesehen, dass der Komplex und damit Teile der Meiose in der Evolution in mehreren Arten unabhängig voneinander entstanden sind“, erklärt Ricardo Benavente, Professor am Lehrstuhl für Zell- und Entwicklungsbiologie der Universität Würzburg.

Demgegenüber stand die bislang unbewiesene Hypothese, dass der Synaptonemal-Komplex nur einmal in der Geschichte der sexuellen Fortpflanzung entstanden ist und sich später in den verschiedenen Arten auseinander entwickelte.

Neue Belege für die einmalige Entstehung

Den Arbeitsgruppen um Professor Ricardo Benavente und den Privatdozenten Dr. Manfred Alsheimer am Biozentrum der Universität Würzburg ist es nun gemeinsam mit Forschern der Universitäten Kiel und Lyon gelungen, verwandte Proteine einzelner Komponenten des Synaptonemal-Komplexes der Maus in dem Süßwasserpolypen Hydra zu identifizieren, einem der ersten mehrzelligen Tiere, die in der Evolution entstanden sind. Diese Proteine besitzen den gleichen evolutiven Ursprung wie die Proteine der Säugetiere, der über 500 Millionen Jahre zurückliegt – am Ursprung der vielzelligen Tiere.

Fazit: „Die Arbeit widerlegt die alte Hypothese zur Evolution des Synaptonemal-Komplexes und liefert neue Belege für eine einmalige Entstehung der Meiose in der Evolution der sexuellen Fortpflanzung“, so Johanna Fraune, Doktorandin und Erstautorin der Arbeit.

Die Forschungsarbeiten in Würzburg werden vom Schwerpunktprogramm 1384 „Mechanisms of Genome Haploidization“ der Deutschen Forschungsgemeinschaft (DFG) finanziert. Die Arbeitsgruppe ist Mitglied des Programms seit der Gründung im Jahr 2009.

“Hydra meiosis reveals unexpected conservation of structural synaptonemal complex proteins across metazoans”, Johanna Fraune, Manfred Alsheimer, Jean-Nicolas Volff, Karoline Busch, Sebastian Fraune, Thomas Bosch & Ricardo Benavente. PNAS/USA doi: 10.1073/pnas.1206875109 (2012)

Kontakt

Dipl.-Biol. Johanna Fraune, T: (0931) 31-84583
E-Mail: johanna.fraune@uni-wuerzburg.de

PD Dr. Manfred Alsheimer, T: (0931) 31-84282
E-Mail: alsheimer@biozentrum.uni-wuerzburg.de

Prof. Dr. Ricardo Benavente, T: (0931) 31-84254
E-Mail: benavente@biozentrum.uni-wuerzburg.de

Gunnar Bartsch | idw
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie