Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Evolution der Genregulation: Wie mikrobielle Nachbarn Gegensätze schlichten

26.05.2009
Auch bei Mikroben dreht sich alles um Angebot und Nachfrage - wenigstens auf genetischer Ebene. Denn nicht jedes ihrer Genprodukte, also die Bauanleitung für Proteine, wird immer benötigt.

Die meisten ihrer Anlagen werden daher, wie bei höheren Organismen auch, erst bei Bedarf aktiv. Im einfachsten Fall aktiviert dann ein Transkriptionsfaktor das betreffende Gen. Etwas komplexer regulierte Anlagen werden dagegen von einem Repressor inaktiv gehalten, der sich erst bei Bedarf ablöst.

Nach dem "use-it-or-lose-it"-Prinzip bilden sich diese zwei Regulationsmechanismen abhängig von der Nachfrage aus: Sind Anlagen häufig aktiv, werden sie in der Regel direkt induziert. Gene für selten gebrauchte Proteine werden dagegen eher durch Repressoren inaktiv gehalten. Der LMU-Physiker Ulrich Gerland und Professor Terence Hwa von der University of California haben nun aber mit Hilfe von Computersimulationen und theoretischen Analysen nachgewiesen, dass ein weiteres - und zwar entgegengesetzt wirkendes - Prinzip ebenfalls zum Tragen kommt: "wear-and-tear".

Danach kann auch eine direkte Aktivierung zu schädlichen Veränderungen führen. "Welches der beiden Prinzipien sich jeweils durchsetzt, hängt aber von evolutiv wirksamen Kriterien wie der Populationsgröße und von den Zeitspannen ab, in denen Umweltveränderungen auftreten", sagt Gerland. "Unsere Studie könnte sich als guter Ausgangspunkt für detaillierte Entwicklungsmodelle regulatorischer Systeme erweisen." (PNAS Early Edition, 22. Mai 2009)

Noch bis zur Mitte des 20. Jahrhunderts beschäftigten sich Biochemiker vor allem mit dem Stoffwechsel, also der Energiegewinnung aus Nahrung. Wenig relevant - und technisch nicht zu klären - waren Fragen nach der Regulation dieser Prozesse als Reaktion auf innere und äußere Signale. Die Biologie der Regulation als eigenständiges Forschungsgebiet konnte sich erst entwickeln, als methodische Fortschritte auch die DNA als Träger der genetischen Anlagen und die Synthese der Proteine als wichtigste Funktionsträger der Zelle der wissenschaftlichen Analyse zugänglich machten. Schnell wurde klar, dass komplexe und vielfältige Regulationsmechanismen die genetische Aktivität von Zellen an innere und äußere Bedingungen anpassen - auch bei Mikroorganismen.

So ist etwa bekannt, dass das Darmbakterium Escherichia coli im Verdauungstrakt von jungen Säugern den in der Muttermilch reichlich enthaltenen Milchzucker Laktose zerlegen kann. Dazu produziert das Bakterium das Enzym Laktase - allerdings nur, wenn auch tatsächlich Laktose vorhanden ist. Die meiste Zeit aber fehlt der Milchzucker. Dann ist das Gen mit der Bauanleitung für das Laktase-Enzym von einem Repressor blockiert. Nur ein Schlüssel passt in das Schloss dieses Proteins, so dass es sich vom Laktase-Gen ablöst: ein Laktose-Molekül als einzig sicheres Anzeichen dafür, dass dieser Zucker jetzt als Nahrung zur Verfügung steht. Andere Gene aber kommen ohne Repressor als Regulator aus: Sie werden direkt durch einen Transkriptionsfaktor aktiviert, der an sie bindet.

Dies sind nur zwei einfache Beispiele für Mechanismen, die die Genaktivität regulieren. Funktional sind sie gleichwertig. "Schon früh stellte sich die Frage, ob die Entscheidung für einen der beiden Mechanismen von der Natur nur zufällig getroffen wird oder ob bestimmte Kriterien eine Rolle spielen", berichtet Gerland. "Studien haben gezeigt, dass die Nachfrage nach dem Genprodukt ein entscheidender Faktor ist: Direkt aktiviert werden meist Gene, deren Proteine die meiste Zeit benötigt werden. Proteine wie die Laktase aber, die nur manchmal zum Einsatz kommen, gehören häufig zu den genetischen Anlagen, die nur bei Bedarf von ihrem Repressor freigegeben werden." Eine Erklärung dafür soll das "use-it-or-lose-it"-Prinzip liefern, das den häufigen Einsatz der Regulationsfaktoren fordert, weil diese sonst schädlichen Veränderungen unterworfen wären.

Anhand von Computersimulationen und theoretischen Berechnungen konnten Gerland und Hwa nun aber zeigen, dass ein weiteres - und zwar entgegengesetzt wirkendes - Prinzip ebenfalls zum Zuge kommt. "Wear-and-tear" soll zum Ausdruck bringen, dass die maximal häufige Nutzung der Regulatoren ebenfalls zu ungünstigen Veränderungen dieser Proteine führen kann. Die beiden Forscher untersuchten deshalb, ob weitere Faktoren eine Rolle spielen, die sich auf die Evolution der Mikroorganismen auswirken können. "Unsere Ergebnisse zeigen klar, dass beide Prinzipien gültig sind, obwohl sie einander eigentlich widersprechen", meint Gerland. "In diesem Spannungsfeld zwischen maximalem und minimalem Einsatz der Regulatoren kommen tatsächlich andere Kriterien zum Tragen: die Populationsgröße und die Zeitspanne, über die sich Veränderungen in der Umwelt hinziehen."

So verläuft die genetische Regulation nach dem "use-it-or-lose-it"-Prinzip mit maximaler Nutzung der Regulationsproteine in kleinen Populationen, die sich in einer nur langsam verändernden Umwelt befinden. Im umgekehrten Fall aber kommt eher "wear-and-tear" mit minimalem Einsatz der Proteine zum Tragen. "Die Evolution regulatorischer Systeme ist noch kaum verstanden", berichtet Gerland. "Es fehlte bislang auch noch weitgehend an passenden theoretischen Modellen. Jetzt aber könnte sich die zeitabhängige Selektion wie in unserem Beispiel als wichtiger Faktor in der regulatorischen Entwicklung erweisen. Viele Fragen sind noch offen, und unsere Ergebnisse stoßen hoffentlich weitere Untersuchungen an." (suwe)

Publikation:
"Evolutionary selection between alternative modes of gene regulation",
Ulrich Gerland and Terence Hwa,
PNAS Early Edition, 22. Mai 2009
Ansprechpartner:
Professor Ulrich Gerland
Tel.: 089 / 2180 - 4514
Fax: 089 / 2180 - 13545
E-Mail: gerland@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.physik.uni-muenchen.de/~gerland

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften