Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die Evolution der Genregulation: Wie mikrobielle Nachbarn Gegensätze schlichten

26.05.2009
Auch bei Mikroben dreht sich alles um Angebot und Nachfrage - wenigstens auf genetischer Ebene. Denn nicht jedes ihrer Genprodukte, also die Bauanleitung für Proteine, wird immer benötigt.

Die meisten ihrer Anlagen werden daher, wie bei höheren Organismen auch, erst bei Bedarf aktiv. Im einfachsten Fall aktiviert dann ein Transkriptionsfaktor das betreffende Gen. Etwas komplexer regulierte Anlagen werden dagegen von einem Repressor inaktiv gehalten, der sich erst bei Bedarf ablöst.

Nach dem "use-it-or-lose-it"-Prinzip bilden sich diese zwei Regulationsmechanismen abhängig von der Nachfrage aus: Sind Anlagen häufig aktiv, werden sie in der Regel direkt induziert. Gene für selten gebrauchte Proteine werden dagegen eher durch Repressoren inaktiv gehalten. Der LMU-Physiker Ulrich Gerland und Professor Terence Hwa von der University of California haben nun aber mit Hilfe von Computersimulationen und theoretischen Analysen nachgewiesen, dass ein weiteres - und zwar entgegengesetzt wirkendes - Prinzip ebenfalls zum Tragen kommt: "wear-and-tear".

Danach kann auch eine direkte Aktivierung zu schädlichen Veränderungen führen. "Welches der beiden Prinzipien sich jeweils durchsetzt, hängt aber von evolutiv wirksamen Kriterien wie der Populationsgröße und von den Zeitspannen ab, in denen Umweltveränderungen auftreten", sagt Gerland. "Unsere Studie könnte sich als guter Ausgangspunkt für detaillierte Entwicklungsmodelle regulatorischer Systeme erweisen." (PNAS Early Edition, 22. Mai 2009)

Noch bis zur Mitte des 20. Jahrhunderts beschäftigten sich Biochemiker vor allem mit dem Stoffwechsel, also der Energiegewinnung aus Nahrung. Wenig relevant - und technisch nicht zu klären - waren Fragen nach der Regulation dieser Prozesse als Reaktion auf innere und äußere Signale. Die Biologie der Regulation als eigenständiges Forschungsgebiet konnte sich erst entwickeln, als methodische Fortschritte auch die DNA als Träger der genetischen Anlagen und die Synthese der Proteine als wichtigste Funktionsträger der Zelle der wissenschaftlichen Analyse zugänglich machten. Schnell wurde klar, dass komplexe und vielfältige Regulationsmechanismen die genetische Aktivität von Zellen an innere und äußere Bedingungen anpassen - auch bei Mikroorganismen.

So ist etwa bekannt, dass das Darmbakterium Escherichia coli im Verdauungstrakt von jungen Säugern den in der Muttermilch reichlich enthaltenen Milchzucker Laktose zerlegen kann. Dazu produziert das Bakterium das Enzym Laktase - allerdings nur, wenn auch tatsächlich Laktose vorhanden ist. Die meiste Zeit aber fehlt der Milchzucker. Dann ist das Gen mit der Bauanleitung für das Laktase-Enzym von einem Repressor blockiert. Nur ein Schlüssel passt in das Schloss dieses Proteins, so dass es sich vom Laktase-Gen ablöst: ein Laktose-Molekül als einzig sicheres Anzeichen dafür, dass dieser Zucker jetzt als Nahrung zur Verfügung steht. Andere Gene aber kommen ohne Repressor als Regulator aus: Sie werden direkt durch einen Transkriptionsfaktor aktiviert, der an sie bindet.

Dies sind nur zwei einfache Beispiele für Mechanismen, die die Genaktivität regulieren. Funktional sind sie gleichwertig. "Schon früh stellte sich die Frage, ob die Entscheidung für einen der beiden Mechanismen von der Natur nur zufällig getroffen wird oder ob bestimmte Kriterien eine Rolle spielen", berichtet Gerland. "Studien haben gezeigt, dass die Nachfrage nach dem Genprodukt ein entscheidender Faktor ist: Direkt aktiviert werden meist Gene, deren Proteine die meiste Zeit benötigt werden. Proteine wie die Laktase aber, die nur manchmal zum Einsatz kommen, gehören häufig zu den genetischen Anlagen, die nur bei Bedarf von ihrem Repressor freigegeben werden." Eine Erklärung dafür soll das "use-it-or-lose-it"-Prinzip liefern, das den häufigen Einsatz der Regulationsfaktoren fordert, weil diese sonst schädlichen Veränderungen unterworfen wären.

Anhand von Computersimulationen und theoretischen Berechnungen konnten Gerland und Hwa nun aber zeigen, dass ein weiteres - und zwar entgegengesetzt wirkendes - Prinzip ebenfalls zum Zuge kommt. "Wear-and-tear" soll zum Ausdruck bringen, dass die maximal häufige Nutzung der Regulatoren ebenfalls zu ungünstigen Veränderungen dieser Proteine führen kann. Die beiden Forscher untersuchten deshalb, ob weitere Faktoren eine Rolle spielen, die sich auf die Evolution der Mikroorganismen auswirken können. "Unsere Ergebnisse zeigen klar, dass beide Prinzipien gültig sind, obwohl sie einander eigentlich widersprechen", meint Gerland. "In diesem Spannungsfeld zwischen maximalem und minimalem Einsatz der Regulatoren kommen tatsächlich andere Kriterien zum Tragen: die Populationsgröße und die Zeitspanne, über die sich Veränderungen in der Umwelt hinziehen."

So verläuft die genetische Regulation nach dem "use-it-or-lose-it"-Prinzip mit maximaler Nutzung der Regulationsproteine in kleinen Populationen, die sich in einer nur langsam verändernden Umwelt befinden. Im umgekehrten Fall aber kommt eher "wear-and-tear" mit minimalem Einsatz der Proteine zum Tragen. "Die Evolution regulatorischer Systeme ist noch kaum verstanden", berichtet Gerland. "Es fehlte bislang auch noch weitgehend an passenden theoretischen Modellen. Jetzt aber könnte sich die zeitabhängige Selektion wie in unserem Beispiel als wichtiger Faktor in der regulatorischen Entwicklung erweisen. Viele Fragen sind noch offen, und unsere Ergebnisse stoßen hoffentlich weitere Untersuchungen an." (suwe)

Publikation:
"Evolutionary selection between alternative modes of gene regulation",
Ulrich Gerland and Terence Hwa,
PNAS Early Edition, 22. Mai 2009
Ansprechpartner:
Professor Ulrich Gerland
Tel.: 089 / 2180 - 4514
Fax: 089 / 2180 - 13545
E-Mail: gerland@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.physik.uni-muenchen.de/~gerland

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen