Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Evolution der Zellkraftwerke

18.05.2016

Das Protein OXA spielt eine wichtige Rolle beim Einbau von Eiweißmolekülen in Mitochondrien

In menschlichen Zellen übernehmen Mitochondrien die Rolle von Kraftwerken. Die freiwerdende Energie treibt den Stoffwechsel der Zellen an. Doch woher stammen diese Kraftwerke und wie werden sie aufgebaut? Freiburger Forscherinnen und Forscher haben untersucht, welche Rolle die so genannte Oxidase Assemblierungsmaschine (OXA) für die Bildung der mitochondrialen Innenmembran und die Energieversorgung von Zellen spielt.


Fluoreszenzmikroskopie des mitochondrialen Netzwerkes (links, grün) und das entsprechende lichtmikroskopische Bild (rechts) einer sich teilenden Hefezelle. Bilder: Nils Wiedemann, Universität Freiburg

Das Team um Dr. Jan Höpker, Dr. Silke Oeljeklaus, Prof. Dr. Nikolaus Pfanner, Dr. Sebastian Stiller, Prof. Dr. Bettina Warscheid und Prof. Dr. Nils Wiedemann hat nachgewiesen, dass dieser Proteinkomplex essentiell für den Einbau bestimmter Proteine, die wichtige Funktionen für die Zellatmung oder andere Vorgänge erfüllen, in die Innenmembran von Mitochondrien ist. Die Forschungsergebnisse wurden in der Fachzeitschrift „Cell Metabolism“ veröffentlicht.

Mitochondrien stammen von einem Bakterium ab und besitzen daher ein eigenes Erbsubstanzmolekül, auf dem der Aufbau einiger Proteine gespeichert ist. Eine OXA verwandte Maschine war schon im bakteriellen Vorläufer der Mitochondrien zu finden und ist in der Evolution erhalten geblieben. OXA baut die Proteine, die gemäß der Erbsubstanz des Mitochondriums gefertigt werden, in dessen innere Membran ein.

Die Erbinformation von 99 Prozent der Proteine, aus denen sich die Mitochondrien zusammensetzen, ist dagegen im Zellkern gespeichert: Die Zelle bildet diese Eiweißmoleküle im Zellwasser, dem Cytosol. Danach importieren die Kanäle TOM, „Translocase of the Outer Membrane“, und TIM, „Translocase of the Inner Membrane“, in der äußeren und der inneren Membran sie in die Mitochondrien. Wie viele dieser importierten Proteine ebenfalls von OXA in die Innenmembran eingebaut werden, war bislang unklar.

Die Freiburger Forscher haben systematisch nach Proteinen gesucht, die OXA nach dem Import über TOM und TIM in die Innenmembran einbaut. Mithilfe von quantitativen massenspektrometrischen Untersuchungen haben die Wissenschaftlerinnen und Wissenschaftler mitochondriale Innenmembranproteine identifiziert, die in Zellen ohne OXA in geringerer Menge vorhanden waren. Indem die Forscher den Einbau radioaktiv markierter Proteine in die Innenmembran der Mitochondrien verfolgten, wiesen sie nach, dass OXA dabei nötig ist.

Die importierten OXA-abhängigen Proteine haben wichtige Funktionen, zum Beispiel bei der Zellatmung, dem Austausch von Metallionen, biochemischen Reaktionen und beim Einbau der Proteine, die den Austausch der Stoffwechselprodukte über die Innenmembran ermöglichen.

Sind Einbau oder Funktion dieser Zellatmungsproteine nicht gewährleistet, entstehen mitochondrial bedingte neuromuskuläre Krankheiten oder Krebserkrankungen. Somit ist der in der Evolution erhalten gebliebene OXA-abhängige Einbau der Innenmembranproteine grundlegend wichtig für die Bildung der mitochondrialen Innenmembran und die Energieversorgung menschlicher Zellen.

Nikolaus Pfanner und Nils Wiedemann leiten Arbeitsgruppen am Institut für Biochemie und Molekularbiologie der Universität Freiburg. Sebastian Stiller forscht in Wiedemanns Arbeitsgruppe. Jan Höpker war Mitglied in Pfanners Arbeitsgruppe. Bettina Warscheid ist Professorin am Institut für Biologie II. Silke Oeljeklaus ist Wissenschaftlerin in Warscheids Arbeitsgruppe. Pfanner, Warscheid und Wiedemann sind Mitglieder des Freiburger Exzellenzclusters BIOSS Centre for Biological Signalling Studies und der Spemann Graduate School of Biology and Medicine der Albert-Ludwigs-Universität.

Originalpublikation:
Sebastian B. Stiller, Jan Höpker, Silke Oeljeklaus, Conny Schütze, Sandra G. Schrempp, Jens Vent-Schmidt, Susanne E. Horvath, Ann E. Frazier, Natalia Gebert, Martin van der Laan, Maria Bohnert, Bettina Warscheid, Nikolaus Pfanner, Nils Wiedemann (2016): Mitochondrial OXA Translocase Plays a Major Role in Biogenesis of Inner-Membrane Proteins. Cell Metabolism, DOI: http://dx.doi.org/10.1016/j.cmet.2016.04.005.

Kontakt:
Prof. Dr. Nils Wiedemann
Institut für Biochemie und Molekularbiologie
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-5280
E-Mail: nils.wiedemann@biochemie.uni-freiburg.de

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-freiburg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise