Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Evolution bringt Doppelgänger-Enzym hervor

19.12.2008
RUB-Forscher berichten in PNAS

Ähnlichkeiten chemischer und elektrischer Nervenzell-Kommunikation

Die Kommunikation zwischen Nervenzellen kann chemisch durch Botenstoffe oder durch elektrische Impulse passieren. Forscher der Ruhr-Universität um Prof. Dr. Rolf Dermietzel haben jetzt gemeinsam mit Kollegen aus Bonn und New York herausgefunden, dass in beiden Fällen das gleiche Schlüsselenzym beteiligt ist. "Die funktionelle Ähnlichkeit bei der Nutzung dieses Enzyms ist so verblüffend groß, dass von einer konvergenten Evolution gesprochen werden kann, was nichts anderes bedeutet, als dass sich zwei Personen außerordentlich ähnlich sein können, ohne miteinander verwandt zu sein", erklärt Prof. Dermietzel.

Die Studie ist in der aktuellen Ausgabe der Proceedings of the National Academy of Science (USA) erschienen.

Zwei Synapsentypen benutzen den gleichen Schlüssel

Nervenzellen reden miteinander. Dies geschieht an ihren Kontaktstellen, den Synapsen, von denen es zwei in ihrem Aufbau fundamental unterschiedliche Typen gibt: die chemischen Synapsen, die Botenstoffe in Form von Neurotransmittern benutzen, und die elektrischen Synapsen, die eine Art Kanalsystem zwischen Nervenzellen bilden und eine direkte Übertragung von elektrischen Impulsen ermöglichen. Fast sämtliche höhere Hirnfunktionen wie Lernen, Gedächtnisspeicherung und Steuerung von Gefühlen wurde auf die Fähigkeit von chemischen Synapsen zurückgeführt, auf eine Ansprache (Nervenreiz) so zu reagieren, dass Erinnerungsspuren gebildet oder vorhandene abgerufen werden können. Hierbei spielt ein Schlüsselenzym eine entscheidende Rolle, das die Fähigkeit besitzt, auf einen kurzen Reiz mit einer langanhaltenden Änderung seiner Aktivität zu reagieren. Bisher wurde dieses Enzym fast ausschließlich an chemischen Synapsen gefunden. Einem internationalen Team von Neurowissenschaftlern und Molekularbiologen aus Bochum um Prof. Dr. Rolf Dermietzel, Bonn um Prof. Dr. Klaus Willecke sowie aus New York um Prof. Dr. David Spray gelang es nun zu zeigen, dass beide Synapsentypen das gleiche Schlüsselenzym benutzen.

Molekularer Schalter für die Gedächtnisbildung

Ein wesentliches Merkmal, das chemische Synapsen für die Ausbildung von Gedächtnisspuren nutzen, ist die synaptische Plastizität. "Hierunter verstehen wir die Fähigkeit der Synapsen, in Abhängigkeit der Stärke und Dauer eines Nervenreizes mit einer langanhaltenden Veränderung ihrer Aktivität zu reagieren, was dazu führen kann, dass sich das Muster neuronaler Verschaltungen ändert", erklärt Prof. Dermietzel. Einer der wichtigsten Botenstoffe, der bei der synaptischen Plastizität eine Rolle spielt, ist der Botenstoff Glutamat, eine kleine Aminosäure. Sie reagiert an der chemischen Synapse mit Rezeptoren, die bei Aktivierung für unterschiedliche geladene Teilchen (Ionen) durchlässig werden. Calcium ist eines der wichtigsten Ionen, das bei Aktivierung eines bestimmten Glutamatrezeptors (NMDA-Rezeptor) in die Nervenzelle einströmt und das Schlüsselenzym CaMKII aktiviert.

Hoffnung auf neue Erkenntnisse zu Epilepsie und Schlaganfall

Die Forscher entdecken nun eine überraschende molekulare Ähnlichkeit des elektrischen Synapsenproteins (Cx36) mit einer Untereinheit des für die Gedächtnisbildung entscheidenden NMDA-Rezeptors. Obwohl beide Moleküle im Aufbau vollkommen unterschiedlich sind, haben sich offenbar im Laufe der Evolution identische Bindungsstellen für das Schlüsselenzym heraus kristallisiert, die es beiden Synapsentypen erlauben diesen molekularen Schalter für Gedächtnisbildung gemeinsam zu nutzen. "Eine Entdeckung, die für uns alle vollkommen unterwartet kam, und die zeigt, wie effizient die Evolution mit ihren Ressourcen umgeht", sagt Prof. Dermietzel. "Wir erwarten von dieser Entdeckung einen Quantensprung in der weiteren Erforschung der Funktion von elektrischen Synapsen, die jahrelang eine Art Aschenputteldasein im Forschungskanon der Neurowissenschaften geführt haben." Es sei nicht auszuschließen, dass sich hierdurch auch neue Erkenntnisse im Bereich neurologischer Erkrankungen wie Epilepsie und Schlaganfall ergeben, bei denen eine Beteiligung von elektrischen Synapsen diskutiert wird.

Titelaufnahme

Cantas Alev, Stephanie Urschel, Stephan Sonntag, Georg Zoidl, Alfredo G. Fort, Thorsten Höher, Mamoru Matsubara, Klaus Willecke, David C. Spray, Rolf Dermietzel: The neuronal gap junction protein Cx36 interacts with and is phosphorylated by CaMKII in a way similar to CaMKII interaction with glutamate receptors. Proc. Natl. Acad. Sci. (USA), 15. December 2008. doi:10.1073/pnas.0805408105

Weitere Informationen

Prof. Dr. Rolf Dermietzel, Medizinische Fakultät der Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-25002, E-Mail: rolf.dermietzel@rub.de

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik