Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Evolution in der Antikörper-Fabrik

11.03.2013
Wie Immunzellen ihre eigene Weiterentwicklung vorantreiben

Bei der Abwehr von Krankheitserregern spielen B-Zellen des Immunsystems eine entscheidende Rolle: Wenn sie einen solchen Eindringling entdecken, produzieren sie Antikörper, die bei seiner Bekämpfung helfen. Gleichzeitig verbessern sie diese Moleküle kontinuierlich, um die Erreger noch passgenauer zu erkennen.


Farbenlehre für Immunologen: Ausgeklügelte Mikroskopie-Techniken erlauben den Forschern einen Einblick in die Evolution der Antikörper-Produzenten im Lymphknoten. Antikörper und Immunzellen sind mit unterschiedlichen Farben markiert.
University of Birmingham/Toellner

Ein Wissenschaftler-Team mit Beteiligung des Helmholtz-Zentrums für Infektionsforschung (HZI) fand heraus: Die Zellen beschleunigen dabei ihre eigene Evolution, indem sie den Selektionsdruck durch bereits produzierte Antikörper selbst erhöhen.

Die Ergebnisse, veröffentlicht in der Fachzeitschrift Journal of Experimental Medicine, sind auch für neue Impfstrategien interessant.

Evolution bedeutet, um begrenzte Ressourcen zu konkurrieren und auf veränderliche Umweltbedingungen zu reagieren. Diesen Selektionsdruck machen sich die B-Zellen gewissermaßen selbst: Sie unterwerfen sich im Lymphknoten einem Optimierungs-Zyklus, den nur einige von ihnen überleben – diejenigen, die „bessere“ Antikörper-Moleküle bilden können als bereits im Körper vorhanden sind. Wie gut die Antikörper sind, wird im Lymphknoten getestet. Nur Zellen, die sich dabei bewähren, erhalten von anderen Immunzellen Signale, die ihr Überleben sicherstellen.

Jede B-Zelle trägt ein spezifisches Abwehrmolekül auf ihrer Oberfläche. Es erkennt bestimmte Strukturen von Krankheitserregern, so genannte Antigene – so wie ein Schlüssel in ein bestimmtes Schloss passt. Dieses Molekül wird außerdem in einer Variante produziert, die nicht auf der Zelloberfläche verbleibt, sondern mit Blut und Lymphe durch den Körper reist. Diesen Typus bezeichnet man als Antikörper. Trifft der Antikörper auf ein Antigen, bindet und neutralisiert er es oder alarmiert andere Mitspieler des Immunsystems.

Zu Beginn einer Infektion gibt es, bildlich gesprochen, mehrere Schlüssel, die aber noch nicht perfekt passen. Das ändert sich durch einen Prozess, den Immunologen als „somatische Hypermutation“ bezeichnen: Die B-Zellen mutieren diejenigen Gen-Abschnitte, die die Gestalt des Oberflächenmoleküls und damit später auch der löslichen Variante bestimmen – und so beeinflussen, wie stark die Antikörper an den Krankheitserreger binden. Die Zellen, bei denen die Passform des Schlüssels zunimmt, überleben und vermehren sich. Sie produzieren dann das gewünschte Molekül in großen Mengen und helfen uns so, schnell wieder gesund zu werden.

Doch woher wissen die Immunzellen, dass sie mit dem willkürlichen Mutieren auf dem richtigen Weg sind, dass der Schlüssel also danach besser passt? Diese Frage konnten Wissenschaftler aus England, Deutschland und der Schweiz in einem Kollaborationsprojekt zwischen Dr. Kai-Michael Toellner, Universität Birmingham, und Prof. Michael Meyer-Hermann, Leiter der Abteilung System-Immunologie am HZI, nun gemeinsam beantworten. Meyer-Hermann nutzt mathematische Modelle, um Krankheiten besser und schneller zu verstehen. „Die System-Immunologie ermöglicht es uns, in kurzer Zeit sehr viele experimentelle Bedingungen zu simulieren“, beschreibt er sein Spezialgebiet. Mithilfe solcher mathematischer Simulationen, gefolgt von experimentellen Überprüfungen, entdeckten die Forscher, dass die Antikörperproduzenten ihre eigene Evolution vorantreiben, was zweifellos eine Anpassung an den enormen Selektionsdruck darstellt, dem wir aufgrund einer ständigen Bedrohung durch Krankheitserreger ausgesetzt sind.

Schauplatz sind die so genannten Keimzentren in den Lymphknoten. Hier treffen die reifenden B-Zellen auf Antigene. Die Ergebnisse der Forscher deuten darauf hin, dass fertige Antikörper aus allen Keimzentren des Körpers wieder an den Orten der Antikörper-Produktion auftauchen und dort ebenfalls an Bruchstücke von Krankheitserregern binden. Dadurch stellen sie eine Konkurrenz für die Zellen dar, die noch dabei sind, die Passform ihrer Oberflächenmoleküle zu optimieren. Nur wenn die Immunzellen mit ihrem „Oberflächen-Schlüssel“ stärker an die „Antigen-Schlösser“ binden können als die fertigen Antikörper, erhalten sie Überlebenssignale und ihre Schlüsselform setzt sich durch.

„Das ist das bereits von Charles Darwin beschriebene ‚Überleben des Bestangepassten‘ auf molekularer Ebene“, vergleicht Meyer-Hermann. Untersuchungen in Mäusen konnten in Computersimulationen nur unter der Annahme bestätigt werden, dass die B-Zellen mit ihren eigenen Produkten, den Antikörpern, um die Bindung an Antigene konkurrieren.

Dieser erstaunliche Mechanismus könnte zukünftig auch gängige Impfmethoden verbessern. „Denkbar ist, Patienten zusätzlich zum Impfstoff auch mittelmäßig gut bindende Antikörper zu verabreichen“, erklärt Meyer-Hermann. „Unsere am Computer aufgestellten Modelle legen nahe, dass diese Methode den Prozess beschleunigt, optimale Antikörper zu identifizieren.“ Die Wissenschaftler vermuten, dass die Zugabe von Antikörpern die Impfreaktion manipuliert, da die neugebildeten Antikörper nun in Konkurrenz zu den von außen zugeführten Molekülen stehen. Die Selektionsbedingungen werden verschärft und die B-Zellen reagieren, in dem sie früher optimale Antikörper produzieren. Die Folge: Impfungen würden schneller wirken.

Originalpublikation:
Yang Zhang*, Michael Meyer-Hermann*, Laura A. George, Marc Thilo Figge, Mahmood Khan, Margaret Goodall, Stephen P. Young, Adam Reynolds, Francesco Falciani, Ari Waisman, Clare A. Notley, Michael R. Ehrenstein, Marie Kosco-Vilbois und Kai-Michael Toellner, * geteilte Erstautorenschaft
Germinal center B cells govern their own fate via antibody feedback
Journal of Experimental Medicine, 2013, doi: 10.1084/jem.20120150
Die Abteilung „System-Immunologie“ des HZI befasst sich mit der mathematischen Modellierung von immunologischen Fragestellungen. Die Abteilung ist mit dem Braunschweig Integrated Centre for Systems Biology (BRICS) assoziiert, einem neuen Forschungszentrum für Systembiologie, das gemeinsam vom HZI und der Technischen Universität Braunschweig gegründet wurde.

Dr. Birgit Manno | Helmholtz-Zentrum
Weitere Informationen:
http://www.helmholtz-hzi.de/de/aktuelles/news/ansicht/article/complete/evolution_in_der_antikoerper_fabrik/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einblick ins geschlossene Enzym
26.06.2017 | Universität Konstanz

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie