Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Evolution: Am Ursprung der allerersten Art

18.11.2015

Ein Modell kann erklären, wie die erste biologische Spezies entstanden ist, von der alle heutigen Lebensformen abstammen

Das Leben auf der Erde glich anfangs wahrscheinlich einem großen genetischen Durcheinander. Vermutlich irgendwann zwischen 3,8 und 3,5 Milliarden Jahren vor unserer Zeit hat sich dann die erste biologische Art gebildet, aus der sich in der Darwinschen Evolution alle anderen Arten entwickelten.


An der Wurzel des Lebensbaums: Die erste biologische Art, mit der die Darwinsche Evolution begann, entstand vermutlich aus einem Kollektiv gemischter Genome ohne definierte Arten.

© Jose Casadiego, Carolin Hoffrogge und Marc Timme

Forscher des Max-Planck-Instituts für Dynamik und Selbstorganisation in Göttingen und der US-amerikanischen Cornell University schlagen nun einen Weg vor, wie aus dem genetischen Mischmasch die erste definierte Spezies entstanden sein könnte.

Demnach fluktuierte das Leben vor Beginn der Darwinschen Evolution zwischen einem genetisch stark durchmischten und einem teilweise entmischten Zustand hin und her. Im Laufe der Zeit wurde der entmischte Zustand mit einem eng umrissenen genetischen Profil immer stabiler und blieb irgendwann als allererste Art bestehen.

Schon Darwins Skizze vom Baum des Lebens aus dem Jahre 1837 veranschaulichte seine Idee, wie aus existierenden Arten immer wieder neue entstanden sind. Dieser Stammbaum wurde zum Leitbild der Evolutionsforschung und steht auch für den gemeinsamen Ursprung aller Lebewesen und ihre Verwandtschaft bis in die Gegenwart.

Die Wurzel dieses Stammbaums bildet eine eigene Art früher Einzeller, die Ur-Vorfahren aller heute existierenden Lebewesen sind. Doch auch schon vor einer solchen ersten Art, die ihr Erbgut mehr oder weniger unverändert an die nächste Generation weitergab, dürfte es Leben und Evolution gegeben haben.

„Uns faszinierte die Frage, wie die erste Art entstanden ist und wie es zum Übergang zur Darwinschen Evolution kommen konnte“, sagt Marc Timme, Leiter der Forschungsgruppe Netzwerkdynamik am Max-Planck-Institut für Dynamik und Selbstorganisation.

Einige Evolutionsforscher gehen heute davon aus, dass die ersten biologischen Arten bereits einen recht gut funktionierenden biochemischen Apparat besaßen und im Darwinschen Sinne relativ fit waren. Die Komponenten des Lebens passten aber vielleicht nicht von Anfang an so gut zusammen.

Vermutlich bildete das Leben anfangs ein genetisch stark durchmischtes Kollektiv, in dem die Biochemie der einzelnen Individuen mehr schlecht als recht funktionierte. Vermutlich tauschten auch nicht verwandte Exemplare dieser frühen Lebensformen mittels horizontalen Gentransfers untereinander rege genetisches Material aus. In der Darwinschen Evolution dominiert dagegen der vertikale Gentransfer von einer Generation zur nächsten.

Sporadisch stieg die Fitness der Population

Dank des schwunghaften Gen-Austauschs könnten sich in dem stark durchmischten Zustand an unterschiedlichen Stellen einzelne biochemische Instrumente entwickelt haben, die auch für die Einzeller der ersten definierten Art brauchbar waren. An manchen Stellen fanden vielleicht zufällig auch mehrere dieser Komponenten zusammen.

Hier stieg die Fitness der einzelnen Individuen, sie vermehrten sich schneller und überlebten eventuell auch länger als der Rest, sodass sich ihr genetischer Code ansammelte und etwas aus dem ansonsten genetisch wild durchmischten Kollektiv herausstach. Bei diesen Einzellern deutete sich sporadisch bereits die Entwicklung einer Art an.

Wie Marc Timme gemeinsam mit Hinrich Arnoldt, der am Max-Planck-Institut für Dynamik und Selbstorganisation forschte, und Steven Strogatz, Wissenschaftler von der Cornell University, nun mit einem einfachen mathematischen Modell zeigt, kann der kollektive Zustand hoher genetischer Durchmischung mit dem zweiten kaum durchmischten Zustand koexistiert haben.

Auch während anfangs der stark durchmischte Zustand vorherrschte, schaltete die evolutionäre Dynamik auch immer wieder in den weniger durchmischten, in dem viele Zellen ähnliche Genome aufwiesen.

In dem genetisch entmischten Zustand höherer biologischer Fitness konnten die Einzeller mit anderen Individuen vermutlich nicht mehr so gut horizontalen Gentransfer betreiben. Denn es dürfte ihnen schwerer gefallen sein, in ihren etwas weiter entwickelten biochemischen Apparat wahllos die Komponenten einzubauen, die ihnen beim horizontalen Genaustausch angedreht werden. Stattdessen dürften die Lebewesen in Phasen genetischer Entmischung ihr Erbgut in der Zellteilung mehr oder weniger unverändert an Tochterzellen weitergegeben haben.

Immer fitter: Vom Kollektiv zur eigenen Art

Anfangs währten die Episoden der genetischen Entmischung jedoch nur kurz. Immer wieder verlor sich der Überlebensvorteil im immer noch großen genetischen Kuddelmuddel wieder. Der horizontale Gentransfer übernahm wieder das Regime – aber nicht mehr so ganz. Und auch ein wenig der überlegenen biologischen Fitness blieb bei einigen Individuen des Kollektivs erhalten. Das bedeutet auch, dass das Kollektiv im Mittel weniger gut horizontalen Gentransfer betreiben konnte und biologisch etwas fitter wurde.

Wie das Modell des deutsch-amerikanischen Forscherteams zeigt, führte die im Schnitt schwindende Kompetenz, horizontal Gene auszutauschen, mit der Zeit dazu, dass sich die Population seltener im stark durchmischten Zustand und öfter im weniger durchmischten Zustand befand. Dadurch kann sich die evolutionäre Entwicklung hin zur ersten biologischen Art nach und nach beschleunigt haben: Mit der erhöhten Fitness der Population nahm deren Fähigkeit zum horizontalen Gentransfer ab, sodass das Kollektiv häufiger und länger in weniger durchmischte Zustände umschaltete, was wiederum die Fitness in einem Teil der Population, aber auch in ihrem Durchschnitt weiter steigen ließ.

Das wichtigste Ergebnis der Forscher weist auf einen qualitativen Übergang hin, der das Hin und Her zwischen stark durchmischtem und entmischtem Zustand beendete: In dem Moment, als die Lebewesen nur noch in geringem Maß horizontal Gene austauschen konnten, wurde der weniger durchmischte Zustand nicht nur sehr häufig, sondern dauerhaft angenommen – denn der stark durchmischte existierte nicht mehr.

„Stark verwandte Zellen mit ähnlichen Genomen können so dauerhaft existieren“, sagt Steven Strogatz. Das heißt: Eine Ur-Spezies könnte sich gebildet haben, weil ein Teil der Population vielleicht eine so gut funktionierende biochemische Grundausstattung in sich vereinigte, dass die Zellen überlebensfähiger waren als der Rest und sich ihr Erbgut höchstens mit kleinen Abweichungen vor allem im vertikalen Gentransfer vermehrte. Ihr genetischer Bauplan stach damit dauerhaft aus dem Rest des Kollektivs hervor: Die erste definierte Art war entstanden und gab den Startschuss für die Darwinsche Evolution.


Ansprechpartner

Carolin Hoffrogge-Lee
Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen
Telefon: +49 551 5176-668

Fax: +49 551 5176-702

E-Mail: presse@ds.mpg.de


Dr. Marc Timme
Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen
Telefon: +49 551 5176-440

Fax: +49 551 5176-409

E-Mail: timme@nld.ds.mpg.de


Originalpublikation
Hinrich Arnoldt, Steven H. Strogatz und Marc Timme

Simple model for the Darwinian transition in early evolution

Physical Review E, 13. November 2015; doi: 10.1103/PhysRevE.92.052909

Carolin Hoffrogge-Lee | Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen
Weitere Informationen:
https://www.mpg.de/9744482/evolution-erste-art

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aufschlussreiche Partikeltrennungen
20.07.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Bildgebung von entstehendem Narbengewebe
20.07.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie

Bildgebung von entstehendem Narbengewebe

20.07.2017 | Biowissenschaften Chemie