Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Es kommt nicht auf die Größe an

02.08.2016

Warum die Komplexität und Fitness von Lebewesen nichts mit der Genomgröße zu tun hat.

Warum verändern sich Genomgrößen, Chromosomenzahlen sowie die Anzahl der Gene unabhängig voneinander während der Evolution von Lebensformen? Warum unterscheiden sich verschiedene Arten hinsichtlich dieser Merkmale z.T. erheblich, ohne dass das mit Verweis auf die Komplexität der jeweiligen Lebensformen erklärbar wäre? Die Lösung dieses Rätsels lag bisher im Dunkeln. Gaterslebener Forscher stellen in der renommierten Fachzeitschrift Trends in Plant Science nun eine Erklärung für dieses Phänomen vor.


Drei Strategien der Genomgrößenevolution.

Ingo Schubert, Katrin Lipfert/ IPK

Der größte Teil der genetischen Information eines Lebewesens, das Genom, wird mit Ausnahme der Bakterien im Zellkern jeder Körperzelle in Form von Chromosomen gespeichert. Von Generation zu Generation muss diese Information, die in doppelsträngigen DNA-Molekülen codiert ist, einerseits möglichst unverändert weitergegeben werden.

Andererseits ist es aber auch notwendig, dass das Genom in Grenzen veränderbar ist, damit sich Lebewesen an die sich über Generationen hinweg ändernden Umweltbedingungen anpassen und damit ihre Überlebensfähigkeit sichern bzw. verbessern können. Solche Veränderungen geschehen häufig durch fehlerhafte Reparatur von Brüchen in der DNA und können über Zellteilungen an Tochterzellen und Nachkommen weitergegeben werden.

Über Generationen hinweg kann sich im Laufe der Evolution so die Genomgröße, die Chromosomenzahl und auch die Anzahl der Gene verändern. Überraschenderweise konnte allerdings kein Zusammenhang zwischen der Größe eines Genoms, der Anzahl seiner Chromosomen und der darin enthaltenen Gene beobachtet werden.

Während die Anzahl von Genen zwischen verschiedenen Arten sich um das Zweifache unterscheiden kann, können sich die Anzahl von Chromosomen um das 100-fache und Genomgrößen sogar um das 2500-fache unterscheiden. Darüber hinaus scheint sich Genomgröße auch nicht mit der steigenden Komplexität von Organismen erklären zu lassen. Über die Ursachen für diesen Befund konnten Wissenschaftler bisher nur spekulieren.

Professor Dr. Ingo Schubert und seine Kollegin Dr. Giang Thi Ha Vu stellen nun eine Hypothese zur Evolution von Genomgrößen und Chromosomenanzahlen vor. Dieser entsprechend hängen Genomgröße und Chromosomenzahl mit den jeweils in der Population bevorzugten Reparaturmechanismen für das Beheben von Doppelstrangbrüchen in der DNA zusammen.

„Wir vermuten, dass es in der Natur drei Strategien für diesen Reparaturmechanismus gibt“, erläutert Ingo Schubert „mit der sich die evolutive Entwicklung der Genomgröße und der Anzahl der Chromosomen erklären ließe: Abhängig von der enzymatischen Ausstattung, unterscheiden sich Arten hinsichtlich der Neigung, Fehler bei der DNA-Doppelstrangbruchreparatur zu beheben. Entweder wird häufiger ein Stück des DNA-Strangs entfernt, oder dieser um ein Stück erweitert, oder aber es besteht ein Gleichgewicht zwischen Entfernen und Erweitern von genetischem Material beim Reparieren von DNA-Strangbrüchen.“

Im ersten Fall wird die zunehmende Verkleinerung des Genoms, welche die Überlebensfähigkeit einer Population langfristig verringern könnte, durch (wiederholte) Verdopplung der Chromosomenzahl kompensiert. Auf diese Weise wird das Risiko reduziert, dass genetische Informationen während der Weitergabe an die nächste Generation verloren gehen. Doppelstrangbruch-bedingte Chromosomen-Umstrukturierungen, die mehrere Chromosomen in eines kombinieren und besonders in Lebewesen mit sehr kleinen Genomen auftreten, verhindern, dass die Chromosomenanzahl ins Unermessliche anwächst.

Im zweiten Fall wird das Genom immer weiter vergrößert, jedoch die Chromosomenzahl variiert kaum. Das ist z. B. für Nadelbäume typisch.

Bei etlichen Gruppen höherer Lebewesen, meist von mittlerer Genomgröße, wie z. B. Säugetieren und Vögeln, scheinen die Reparatur von Brüchen des DNA-Strangs gleichgewichtig sowohl durch Erweiterung als auch Verkürzung vorgenommen werden zu können, wodurch sich sowohl die Genomgröße kaum verändert und die Anzahl der Chromosomen in der Regel keine bestimmte Tendenz der Veränderung erkennen lässt.

„Wir sehen nun, durch unsere eigenen Versuchsergebnisse erhärtet, die Evolution von Genomgröße, Chromosomenzahl und DNA-Doppelstrangbruchreparatur im Zusammenhang. Das erklärt die teils entgegengesetzten Evolutionsverläufe dieser Parameter und bietet eine neue Interpretation für die fehlende Korrelation von Genomgröße und genetischer Komplexität“, freut sich Ingo Schubert.

Publikation:

Ingo Schubert, Giang T.H. Vu (2016): Genome Stability and Evolution: Attempting a Holistic View. Trends in Plant Science, doi:10.1016/j.tplants.2016.06.003.

Weitere Informationen:

Das Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK) in Gatersleben ist eine außeruniversitäre, mit Bundes- und Ländermitteln geförderte Forschungseinrichtung und Mitglied der Leibniz-Gemeinschaft. Am IPK forschen und arbeiten mehr als 500 Mitarbeiter/-innen aus über 30 Nationen. Zentrales Anliegen der wissenschaftlichen Arbeiten am IPK ist die Untersuchung der genetischen Vielfalt von Kultur- und verwandten Wildpflanzen und der Prozesse, die zu ihrem Entstehen geführt haben. Daraus abgeleitet erfolgt die Aufklärung der molekularen Mechanismen, die zur Ausprägung und Variation pflanzlicher Merkmale beitragen. Hieraus erwachsende Erkenntnisse ermöglichen die Entwicklung und Anwendung von Strategien zu einer vertieften Charakterisierung und darauf aufbauend zu einer wissensbasierten Nutzbarmachung der in der Genbank vorgehaltenen pflanzengenetischen Ressourcen. www.ipk-gatersleben.de

Ansprechpartnerin für die Medien:

Dr. Sabine Odparlik, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Leiterin der Geschäftsstelle des Direktoriums, Corrensstraße 3, 06466 Seeland OT Gatersleben, Tel.: +49 (0)39482 5837 - Fax: +49 (0)39482 5500 – Email: odparlik@ipk-gatersleben.de

Fachlicher Ansprechpartner:

Professor Dr. Ingo Schubert, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK), Corrensstraße 3, 06466 Seeland OT Gatersleben - Tel.: +49 (0)39482 5239 – Email: schubert@ipk-gatersleben.de

Dr. Sabine Odparlik | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ipk-gatersleben.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aufräumen? Nicht ohne Helfer
19.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Einzelne Rezeptoren auf der Arbeit
19.10.2017 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Aufräumen? Nicht ohne Helfer

19.10.2017 | Biowissenschaften Chemie

Neue Biotinte für den Druck gewebeähnlicher Strukturen

19.10.2017 | Materialwissenschaften

Forscher studieren molekulare Konversion auf einer Zeitskala von wenigen Femtosekunden

19.10.2017 | Physik Astronomie