Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ertappt: Mikrobielle „Methanfresser“ im Meeresboden nutzen Gasblasen zum Aufstieg in der Wassersäule

30.07.2015

Neuartiges Instrument zum Auffangen von Gasblasen (bubble catcher) liefert erste Beweise für einen bisher unbeachteten Transportprozess, der für die Reduktion des Klimagases Methan in der marinen Umwelt Bedeutung haben kann.

Um die Rolle von Mikroorganismen im Prozess der Methanregulierung im Meer besser zu verstehen, entwickelten Wissenschaftler vom Leibniz-Institut für Ostseeforschung Warnemünde (IOW) ein neues Gerät, mit dem sich der Transport dieser Organismen durch vom Meeresboden aufsteigende Methanblasen in die Wassersäule erfassen lässt.


Einsatz des IOW-Bubble-Catchers vor der Küste Kaliforniens: Projektleiter Oliver Schmale (r.) mit den Team-Kollegen Jens Schneider v. Deimling (GEOMAR, Kiel, links) und Katrin Kießlich (IOW, Mitte).

IOW


Blasenauffangtrichter des IOW-Bubble-Catchers über einer der Methanaustrittsstellen des Untersuchungsgebietes

University of California

Mit diesem sogenannten „Bubble Catcher“ gelang nun erstmals der Nachweis, dass Methan-konsumierende Bakterien tatsächlich auf diesem Weg aus dem Sediment ins freie Wasser gelangen. Dieser Transportprozess kann somit von Bedeutung für die Reduktion des Klimagases Methan in der marinen Umwelt und damit für das Klimageschehen auf der Erde sein.

Zu verstehen, auf welchem Wege Methan in die Atmosphäre gelangt und welche Prozesse das verhindern können, ist ein wichtiges Ziel der Umweltforschung. Auch in der Meeresforschung sind weltweit Methanquellen wie untermeerische Schlammvulkane, Kohlenwasserstoff-Austrittsgebiete (Seeps) und die Organik-reichen Sedimente in Randmeeren wie der Ostsee im Fokus der Untersuchungen. Marine Methanquellen sind zahlreich und vielfältig.

Auf dieses umfangreiche Angebot haben sich Mikroorganismen spezialisiert: So nutzen vor allem Methan-oxidierende Bakterien im Freiwasser und methanotrophe Archaeen am Meeresboden Methan als Energie- und Kohlenstoffquelle. Dabei wandeln sie es in Karbonate und Biomasse oder in das im Vergleich zum Methan weniger potente Treibhausgas Kohlendioxid um.

Dieser effektive Prozess verhindert normalerweise, dass Methan aus dem Meeresboden bis an die Wasseroberfläche und damit auch in die Atmosphäre gelangt. Wenn jedoch so viel Methan austritt, dass es in Form von Gasblasen vom Meeresboden aufsteigt, funktioniert der mikrobielle Methanfilter im Sediment und in der Wassersäule nicht mehr: Die hohe Geschwindigkeit der Blasen führt das Methan zu rasch an den Zonen vorbei, in denen die Methan-umsetzenden Mikroorganismen leben.

Aus anderen aquatischen Umgebungen wie z. B. dem Grundwasser ist bekannt, dass Blasen an ihrer Außenhaut Mikroorganismen transportieren können. Unbeachtet blieb aber bislang der blasenvermittelte Transport zwischen Sediment und Wassersäule. Dies war der Ansatzpunkt für das Team der IOW-WissenschaftlerInnen um den Meereschemiker Oliver Schmale und seinen KollegInnen vom Kieler GEOMAR sowie der University of California, die mit dem extra für diesen Zweck entwickelten Bubble Catcher untersuchen wollten, ob methanotrophe Bakterien im Sediment über ein Anheften an die Gasblasenhaut am Aufstiegsprozess der Gasblasen teilnehmen und ob auf diesem Wege das umgebende Wasser kontinuierlich mit diesen Organismen geimpft wird.

Der Nachweis eines solchen Prozesses ist allerdings nicht einfach, da die Gasblasen und die daran anheftenden Mikroorganismen möglichst kontaminationsfrei an der Blasenaustrittsstelle eingefangen werden müssen. Während einer Pilot Studie vor der Küste Kaliforniens gelang es dem Forscherteam jedoch nun erstmals, über einem natürlichen Methan-Austritt die entweichenden Blasen in dem mit künstlichem, sterilen Meerwasser gefüllten Zylinder des Bubble Catchers einzufangen. Durch anschließende mikroskopische Analysen (CARD-FISH) wiesen sie nach, dass Methan-oxidierende Bakterien die Methanblasen begleiteten.

Oliver Schmale: „Wir wissen jetzt, dass methanotrophe Bakterien aus dem Sediment die Gasblasen tatsächlich als ‚Mitfahrgelegenheit‘ nutzen und so in die umgebende Wassersäule transportiert werden. Weitere Untersuchungen müssen nun zeigen, ob die Bakterien nach ihrem Umgebungswechsel weiterhin in der Wassersäule aktiv bleiben und so den Transport des Treibhausgases in die Atmosphäre vermindern.“

Publiziert wurden die von der Deutschen Forschungsgemeinschaft (DFG) finanzierten Arbeiten kürzlich in der Fachzeitschrift Continental Shelf Research:
Schmale, O., I. Leifer, J. S. v. Deimling, C. Stolle, S. Krause, K. Kießlich, A. Frahm and T. Treude (2015). Bubble transport mechanism: indications for a gas bubble-mediated inoculation of benthic methanotrophs into the water column. Cont. Shelf Res. 103: 70-78, doi:10.1016/j.csr.2015.04.022

*Kontakt:
Dr. Oliver Schmale, Sektion Meereschemie, Leibniz-Institut für Ostseeforschung Warnemünde, Tel.: 0381 5197 305, oliver.schmale@io-warnemuende.de

Dr. Barbara Hentzsch, Presse- und Öffentlichkeitsarbeit, Leibniz-Institut für Ostseeforschung Warnemünde, Tel.: 0381 – 5197 102, barbara.hentzsch@io-warnemuende.de

Das IOW ist Mitglied der Leibniz-Gemeinschaft, zu der zurzeit 89 Forschungsinstitute und wissenschaftliche Infrastruktureinrichtungen für die Forschung gehören. Die Ausrichtung der Leibniz-Institute reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts-, Sozial- und Raumwissenschaften bis hin zu den Geisteswissenschaften. Bund und Länder fördern die Institute gemeinsam. Insgesamt beschäftigen die Leibniz-Institute etwa 18.100 MitarbeiterInnen, davon sind ca. 9.200 WissenschaftlerInnen. Der Gesamtetat der Institute liegt bei mehr als 1,64 Mrd. Euro. (http://www.leibniz-gemeinschaft.de)

Dr. Barbara Hentzsch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie