Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erstmals molekularer Blick in atriale Herzmuskelzellen

08.11.2016

Weltpremiere: UMG-Herzforschern gelingt detaillierter molekularer Blick in atriale Herzmuskelzellen: Neuartige Signalprozesse und auch Krankheitsursachen z.B. von Herzrhythmusstörungen können so grundlegend erklärt werden. Veröffentlichung in der renommierten Fachzeitschrift The Journal of Clinical Investigation.

Rund zwei Drittel aller Herzrhythmusstörungen insbesondere bei älteren Menschen haben ihren Ursprung im Herzvorhof. Hier sind die „atrialen“ Herzmuskelzellen des Vorhofs entscheidend für die Füllung der Herzkammern. Doch bisher wurden diese Herzmuskelzellen kaum gezielt mit modernsten zellbiologischen Methoden untersucht.


Abb.1: Lebendzell-Membranverfärbung von gesunden und kranken atrialen Maus-Herzmuskelzellen. Zur Darstellung kommt das Tubulus-Netzwerk in der Kontrollzelle (links vergrößert) sowie in der pathologisch vergrößerten Zelle nach Aortenstenose (rechts vergrößert). Die längsgerichteten Tubuli sind im Bild als vertikale Strukturen sichtbar. Maßstab 10 µm. Foto: umg


Abb.2: Zeitgleich zur Proliferation der axialen Tubuli (siehe oberes Bild) steigt die Anzahl hoch-phosphorylierter RyR2-Calcium-Freisetzungskanäle (sichtbar als gelbe Strukturen in den vergrößerten Bildern) im direkten Vergleich zwischen der Kontroll- (links) und der pathologisch vergrößerten atrialen Herzmuskelzelle (rechts). Niedrig-phosphorylierte RyR2-Calciumkanäle erscheinen dagegen als grün markierte Cluster-Strukturen. Maßstab 10 µm. Foto: umg

Sören Brandenburg und Prof. Dr. Stephan Lehnart, beide Klinik für Kardiologie und Pneumologie der Universitätsmedizin Göttingen (UMG), ist es nun weltweit erstmals gelungen, die molekularen Zellstrukturen sogenannter atrialer Kardiomyozyten sichtbar zu machen.

Die Forschung wurde durch den Sonderforschungsbereich 1002 „Modulatorische Einheiten bei Herzinsuffizienz“, das Deutsche Zentrum für Herzkreislauf-Forschung (DZHK) sowie die Europäische Union gefördert. Die Ergebnisse sind veröffentlicht in der renommierten Fachzeitschrift The Journal of Clinical Investigation.

Originalveröffentlichung: Sören Brandenburg, Tobias Kohl, George S.B. Williams, Konstantin Gusev, Eva Wagner, Eva A. Rog-Zielinska, Elke Hebisch, Miroslav Dura, Michael Didié, Michael Gotthardt, Viacheslav O. Nikolaev, Gerd Hasenfuss, Peter Kohl, Christopher W. Ward, W. Jonathan Lederer and Stephan E. Lehnart: Axial tubule junctions control rapid calcium signaling in atria.The Journal of Clinical Investigation. doi:10.1172/JCI88241.

FORSCHUNGSERGEBNISSE IM DETAIL

Nach neuen Erkenntnissen werden atriale Herzmuskelzellen von spezialisierten und elektrisch erregbaren Membranschläuchen, dem sog. Tubulus-Netzwerk, durchzogen. Das schlauchartige Membransystem durchzieht die atrialen Zellen auf ungewöhnliche Weise. Bislang war unklar, wie elektrische Signale die Kontraktion der atrialen Herzmuskelzelle auslösen und wie die Kontraktion abläuft.

„Wir konnten nun zeigen, wie das elektrische Aktionspotential durch die Tubulus-Strukturen bis tief in die Zelle hineingelangt und wo die Zelle im Inneren genau durch die Freisetzung von Ca²+-Ionen stimuliert wird. Ein besseres Verständnis dieser subzellulären Signalmechanismen ermöglicht auch detaillierte Vorhersagen bei Krankheiten, wenn die Signalprozesse gestört sind. Dies ist z.B. bei Herzrhythmusstörungen der Fall“, sagt Sören Brandenburg, Erstautor der Studie.

Die Göttinger Forscher haben zunächst Herzmuskelzellen von genetisch veränderten Mäusen untersucht und dann ihre molekularen Ergebnisse in menschlichen Herzmuskelzellen bestätigt. Das von ihnen erstmals beschriebene und Vorhofzellen-spezifische tubuläre Membrannetzwerk besteht (im Gegensatz zu Muskelzellen der ventrikulären Herzkammern) hauptsächlich aus längs zur Zellachse ausgerichteten Tubulus-Nanostrukturen.

Diese kleinsten Strukturen waren mit Hilfe modernster Mikroskopie-Verfahren, wie Stimulated Emission Depletion (STED) und Elektronentomographie, messbar. Die Göttinger Forscher konnten sichtbar machen, wo diese „axialen“ Membrantubuli mit besonders vielen Calcium-Freisetzungskanälen, sog. Ryanodin-Rezeptoren, assoziiert sind, die das Calcium-Signal und damit direkt die Kontraktion der Zelle maßgeblich beeinflussen.

Prozesse verstehen, um neue Therapieansätze entwickeln zu können

Ein gemeinsam mit den amerikanischen Wissenschaftlern Prof. Jonathan Lederer, Prof. George Williams und Prof. Christopher Ward der University of Maryland in Baltimore entwickeltes Computermodell simuliert erstmals die Calcium-Signale atrialer Zellen. So lässt sich beispielsweise folgende Frage beantworten: Wie wird im Zellinneren ein besonders schnelles lokales Calcium-Signalverhalten durch axiale Tubulus-Strukturen vermittelt? Das Modell soll helfen, diese sehr schnellen Signalprozesse noch besser zu verstehen und in Zukunft neue Therapieansätze entwickeln zu können. Das Göttinger Forscherteam konnte im Mausmodell zeigen, welche Auswirkungen eine pathologische Zunahme der Herzmuskeldicke induziert durch Aortenstenose auf atriale Herzmuskelzellen hat.

„Die atrialen Zellen wurden dabei nicht nur deutlich größer, auch die Zahl der axialen Tubulus-Strukturen nahm deutlich zu. Diese strukturellen Veränderungen haben einen wichtigen Einfluss auf Calcium-Signale und können eine wichtige Rolle für die Entwicklung von Herzrhythmusstörungen spielen. Wir haben jetzt die Möglichkeit, diese Signal-Prozesse vorherzusagen und zu überlegen, welche Substanzen oder Therapieverfahren helfen könnten, nachteilige atriale Remodeling-Prozesse zu verhindern“, sagt Prof. Lehnart, Seniorautor der Studie. Die Idee dahinter: Werden entscheidende krankheitsauslösende Veränderungen in atrialen Zellen frühzeitig gehemmt, können Folgeerkrankungen wie Vorhofflimmern und Schlaganfälle möglicherweise verhindert werden.

Internationale Kooperation bringt Forschungserfolg

Die Publikation der Göttinger Forschungserkenntnisse erfährt eine große Resonanz in der Fachwelt. In einem begleitenden Editorial würdigen die prominenten US-Forscher Prof. Thomas J. Hund und Prof. Peter J. Mohler der Ohio State University die Göttinger Forschung als „beispiellosen experimentellen Kraftakt“, der ein besonders schwieriges aber wichtiges kardiovaskuläres Forschungsfeld nachhaltig erschließt.

Wichtige Voraussetzung für das Gelingen der zentralen zellbiologischen Untersuchungen waren die Optimierung der Methoden bei der Zellisolation und Lebendzell-Membranfärbung, die Verfügbarkeit modernster, hochauflösender Mikroskopie-Verfahren in Göttingen sowie internationale Kollaborationen mit methodisch ausgewiesenen Standorten. „Die enge Kooperation von Universitätsmedizin, Georg-August-Universität und den Max-Planck-Instituten ist ein großer Vorteil des Herzforschungsstandorts Göttingen.

Für die Arbeit konnten wir auf eine Kombination von eigens etablierten Methoden zurückgreifen und diese mit innovativen Bildgebungs-verfahren, wie etwa der STED-Mikroskopie von der Arbeitsgruppe um Professor Stefan Hell, ergänzen“, sagt Prof. Dr. Gerd Hasenfuß, Mitautor der Studie und Vorsitzender des Herzforschungszentrums Göttingen (HRCG).


WEITERE INFORMATIONEN
Universitätsmedizin Göttingen, Georg-August-Universität
Klinik für Kardiologie und Pneumologie, Herzzentrum
Prof. Dr. Stephan E. Lehnart
Professor für Translationale Kardiologie
Telefon 0551 / 39-10574
slehnart@med.uni-goettingen.de

www.herzzentrum-goettingen.de

Stefan Weller | Universitätsmedizin Göttingen - Georg-August-Universität

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht In Hochleistungs-Mais sind mehr Gene aktiv
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Warum es für Pflanzen gut sein kann auf Sex zu verzichten
19.01.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie