Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ersthelfer am Ground Zero: Wie Mikrogliazellen im Gehirn verletzte Stellen lokalisieren

25.05.2012
Sie verhalten sich im Prinzip wie Rettungskräfte, die an den Ort einer Katastrophe eilen: die sogenannten Mikrogliazellen sind unverzüglich zur Stelle, wenn eine Verletzung im Gehirn vorliegt.

Und sie beheben den Schaden, indem sie verletzte Zellen sowie sterbende oder bereits tote Neuronen einfach “aufessen”. Wissenschaftler am Europäischen Laboratorium für Molekularbiologie (EMBL) in Heidelberg, Deutschland, haben nun erstmals herausgefunden, wie Mikroglia eine verletzte Stelle im Gehirn mithilfe einer Stafette molekularer Signale lokalisieren. Die Ergebnisse der Studie, die heute in der Fachzeitschrift Developmental Cell veröffentlicht werden, bereiten den Weg für neue medizinische Ansätze. Dies gilt vor allem für Erkrankungen, bei denen die Fähigkeit der Mikroglia eingeschränkt ist, diese gefährlichen Zellen und anderes schädliches Material im Gehirn zu identifizieren.

“Angesichts der Tatsache, dass Mikroglia einiges zur Gesunderhaltung unseres Gehirns beitragen, wissen wir erstaunlich wenig über sie,” so Francesca Peri, die Leiterin der Studie. “Es ist uns nun zum ersten Mal gelungen, den Mechanismus zu entschlüsseln, der es den Mikroglia ermöglicht, eine Verletzung im Gehirn zu lokalisieren. Außerdem haben wir herausgefunden, wie ein Notruf von Neuron zu Neuron weitergeleitet wird.”

Normalerweise werden im Falle einer Katastrophe Außenstehende zunächst durch Schreie alarmiert und informieren dann die Rettungskräfte. Über Funk wird die Nachricht weiter verbreitet, woraufhin Krankenwagen und Einsatzkräfte der Polizei oder Feuerwehr, die sich in der Nähe aufhalten, je nach Bedarf zum Unfallort eilen. Im Gehirn, so fanden Peri und ihre Kollegen heraus, setzen verletzte Neuronen ihren ganz eigenen Hilfeschrei ab, indem sie ein Molekül namens Glutamat freisetzen. Benachbarte Neuronen erkennen das Glutamat und reagieren darauf, indem sie Kalzium aufnehmen. Da sich das Glutamat so von der verletzten Stelle her immer weiter ausbreitet, entsteht eine wellenartige Aufnahme von Kalzium durch die Neuronen, wodurch ein drittes Molekül, das sogenannte ATP, freigesetzt wird. Sobald die Welle eine Mikrogliazelle erreicht, erkennt diese das ATP und handelt daraufhin unverzüglich: Sie bewegt sich in die entsprechende Richtung, indem sie im Prinzip die Welle bis zu ihrem Ausgangspunkt zurückverfolgt.

Den Wissenschaftlern war bereits bekannt, dass Mikroglia ATP erkennen können. Da dieses Molekül ausserhalb der Zelle jedoch sehr instabil ist, bestanden bisher Zweifel, ob ATP allein als Signalsubstanz wirklich stark genug wäre, auch Mikroglia zu erreichen, die sich weiter entfernt vom Ort des Geschehens befinden. Im Laufe der Forschungsarbeiten entdeckten Peri und ihre Kollegen, dass bei der Signalübermittlung ein Trick angewandt wird: eine langanhaltende glutamatgesteuerte Kalziumwelle, die sich durch das gesamte Gehirn bewegen kann. Dank dieser Kaskade wird das ATP-Signal nicht nur von den verletzten Zellen ausgesendet sondern von allen Neuronen entlangs des Wegs, solange, bis die Mikroglia erreicht werden.

Dirk Sieger und Christian Moritz aus der Forschungsgruppe von Francesca Peri machten sich bei ihrer Arbeit den Umstand zunutze, dass die Köpfe der Zebrafische transparent sind, d.h. die Wissenschaftler konnten mit dem Mikroskop direkt in das Gehirn der Fische schauen. Sie verwendeten zunächst einen Laser, um einige Gehirnzellen gezielt zu verletzen und beobachteten dann fluoreszenz-markierte Mikroglia, wie sie sich auf die verletzten Zellen zubewegten. Auch nachdem sie Zebrafische genetisch so verändert hatten, dass der Kalziumspiegel der Neuronen unter dem Mikroskop nachweisbar war, konnten die Wissenschaftler bestätigen, dass die Mikroglia sich unverzüglich in Richtung Verletzung in Gang setzten, sobald die Kalziumwelle sie erreicht hatte.

Das Wissen um die einzelnen Schritte in diesem Prozess und wie sie sich gegenseitig beeinflussen, könnte die Entwicklung neuer Therapien unterstützen, mit dem Ziel, die Erkennung durch die Mikroglia zu verbessern. Diese ist bei Erkrankungen wie z.B. Alzheimer und Parkinson nachhaltig gestört.

Veröffentlicht in Developmental Cell am 24. Mai 2012. DOI: 10.1016/j.devcel.2012.04.012.

Nutzungsbedingungen

EMBL Pressemitteilungen, Photos, Grafiken und Videos unterliegen dem EMBL copyright. Sie können für nicht-kommerzielle Nutzung frei reproduziert und verbreitet werden. Wir bitten um Nennung der Autoren und Institution. Hochauflösende Bilder können von folgender Internetseite heruntergeladen werden: www.embl.org.

Deutsch Kontakt:
Lena Raditsch
Meyerhofstr. 1, 69117 Heidelberg, Deutschland
Tel.: +49 (0)6221 387 8443
Fax: +49 (0)6221 387 8525
lena.raditsch@embl.de
Sonia Furtado Neves
EMBL Press Officer
Meyerhofstr. 1, 69117 Heidelberg, Germany
Tel.: +49 (0)6221 387 8263
Fax: +49 (0)6221 387 8525
sonia.furtado@embl.de

Sonia Furtado Neves | EMBL Research News
Weitere Informationen:
http://www.embl.org

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Feinste organische Partikel in der Atmosphäre sind häufiger glasartig als flüssige Öltröpfchen
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Darmflora beeinflusst das Altern
21.04.2017 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Im Focus: Tief im Inneren von M87

Die Galaxie M87 enthält ein supermassereiches Schwarzes Loch von sechs Milliarden Sonnenmassen im Zentrum. Ihr leuchtkräftiger Jet dominiert das beobachtete Spektrum über einen Frequenzbereich von 10 Größenordnungen. Aufgrund ihrer Nähe, des ausgeprägten Jets und des sehr massereichen Schwarzen Lochs stellt M87 ein ideales Laboratorium dar, um die Entstehung, Beschleunigung und Bündelung der Materie in relativistischen Jets zu erforschen. Ein Forscherteam unter der Leitung von Silke Britzen vom MPIfR Bonn liefert Hinweise für die Verbindung von Akkretionsscheibe und Jet von M87 durch turbulente Prozesse und damit neue Erkenntnisse für das Problem des Ursprungs von astrophysikalischen Jets.

Supermassereiche Schwarze Löcher in den Zentren von Galaxien sind eines der rätselhaftesten Phänomene in der modernen Astrophysik. Ihr gewaltiger...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: Neu entdeckter Exoplanet könnte bester Kandidat für die Suche nach Leben sein

Supererde in bewohnbarer Zone um aktivitätsschwachen roten Zwergstern gefunden

Ein Exoplanet, der 40 Lichtjahre von der Erde entfernt einen roten Zwergstern umkreist, könnte in naher Zukunft der beste Ort sein, um außerhalb des...

Im Focus: Resistiver Schaltmechanismus aufgeklärt

Sie erlauben energiesparendes Schalten innerhalb von Nanosekunden, und die gespeicherten Informationen bleiben auf Dauer erhalten: ReRAM-Speicher gelten als Hoffnungsträger für die Datenspeicher der Zukunft.

Wie ReRAM-Zellen genau funktionieren, ist jedoch bisher nicht vollständig verstanden. Insbesondere die Details der ablaufenden chemischen Reaktionen geben den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

Baukultur: Mehr Qualität durch Gestaltungsbeiräte

21.04.2017 | Veranstaltungen

Licht - ein Werkzeug für die Laborbranche

20.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Intelligenter Werkstattwagen unterstützt Mensch in der Produktion

21.04.2017 | HANNOVER MESSE

Forschungszentrum Jülich auf der Hannover Messe 2017

21.04.2017 | HANNOVER MESSE

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungsnachrichten