Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ersthelfer am Ground Zero: Wie Mikrogliazellen im Gehirn verletzte Stellen lokalisieren

25.05.2012
Sie verhalten sich im Prinzip wie Rettungskräfte, die an den Ort einer Katastrophe eilen: die sogenannten Mikrogliazellen sind unverzüglich zur Stelle, wenn eine Verletzung im Gehirn vorliegt.

Und sie beheben den Schaden, indem sie verletzte Zellen sowie sterbende oder bereits tote Neuronen einfach “aufessen”. Wissenschaftler am Europäischen Laboratorium für Molekularbiologie (EMBL) in Heidelberg, Deutschland, haben nun erstmals herausgefunden, wie Mikroglia eine verletzte Stelle im Gehirn mithilfe einer Stafette molekularer Signale lokalisieren. Die Ergebnisse der Studie, die heute in der Fachzeitschrift Developmental Cell veröffentlicht werden, bereiten den Weg für neue medizinische Ansätze. Dies gilt vor allem für Erkrankungen, bei denen die Fähigkeit der Mikroglia eingeschränkt ist, diese gefährlichen Zellen und anderes schädliches Material im Gehirn zu identifizieren.

“Angesichts der Tatsache, dass Mikroglia einiges zur Gesunderhaltung unseres Gehirns beitragen, wissen wir erstaunlich wenig über sie,” so Francesca Peri, die Leiterin der Studie. “Es ist uns nun zum ersten Mal gelungen, den Mechanismus zu entschlüsseln, der es den Mikroglia ermöglicht, eine Verletzung im Gehirn zu lokalisieren. Außerdem haben wir herausgefunden, wie ein Notruf von Neuron zu Neuron weitergeleitet wird.”

Normalerweise werden im Falle einer Katastrophe Außenstehende zunächst durch Schreie alarmiert und informieren dann die Rettungskräfte. Über Funk wird die Nachricht weiter verbreitet, woraufhin Krankenwagen und Einsatzkräfte der Polizei oder Feuerwehr, die sich in der Nähe aufhalten, je nach Bedarf zum Unfallort eilen. Im Gehirn, so fanden Peri und ihre Kollegen heraus, setzen verletzte Neuronen ihren ganz eigenen Hilfeschrei ab, indem sie ein Molekül namens Glutamat freisetzen. Benachbarte Neuronen erkennen das Glutamat und reagieren darauf, indem sie Kalzium aufnehmen. Da sich das Glutamat so von der verletzten Stelle her immer weiter ausbreitet, entsteht eine wellenartige Aufnahme von Kalzium durch die Neuronen, wodurch ein drittes Molekül, das sogenannte ATP, freigesetzt wird. Sobald die Welle eine Mikrogliazelle erreicht, erkennt diese das ATP und handelt daraufhin unverzüglich: Sie bewegt sich in die entsprechende Richtung, indem sie im Prinzip die Welle bis zu ihrem Ausgangspunkt zurückverfolgt.

Den Wissenschaftlern war bereits bekannt, dass Mikroglia ATP erkennen können. Da dieses Molekül ausserhalb der Zelle jedoch sehr instabil ist, bestanden bisher Zweifel, ob ATP allein als Signalsubstanz wirklich stark genug wäre, auch Mikroglia zu erreichen, die sich weiter entfernt vom Ort des Geschehens befinden. Im Laufe der Forschungsarbeiten entdeckten Peri und ihre Kollegen, dass bei der Signalübermittlung ein Trick angewandt wird: eine langanhaltende glutamatgesteuerte Kalziumwelle, die sich durch das gesamte Gehirn bewegen kann. Dank dieser Kaskade wird das ATP-Signal nicht nur von den verletzten Zellen ausgesendet sondern von allen Neuronen entlangs des Wegs, solange, bis die Mikroglia erreicht werden.

Dirk Sieger und Christian Moritz aus der Forschungsgruppe von Francesca Peri machten sich bei ihrer Arbeit den Umstand zunutze, dass die Köpfe der Zebrafische transparent sind, d.h. die Wissenschaftler konnten mit dem Mikroskop direkt in das Gehirn der Fische schauen. Sie verwendeten zunächst einen Laser, um einige Gehirnzellen gezielt zu verletzen und beobachteten dann fluoreszenz-markierte Mikroglia, wie sie sich auf die verletzten Zellen zubewegten. Auch nachdem sie Zebrafische genetisch so verändert hatten, dass der Kalziumspiegel der Neuronen unter dem Mikroskop nachweisbar war, konnten die Wissenschaftler bestätigen, dass die Mikroglia sich unverzüglich in Richtung Verletzung in Gang setzten, sobald die Kalziumwelle sie erreicht hatte.

Das Wissen um die einzelnen Schritte in diesem Prozess und wie sie sich gegenseitig beeinflussen, könnte die Entwicklung neuer Therapien unterstützen, mit dem Ziel, die Erkennung durch die Mikroglia zu verbessern. Diese ist bei Erkrankungen wie z.B. Alzheimer und Parkinson nachhaltig gestört.

Veröffentlicht in Developmental Cell am 24. Mai 2012. DOI: 10.1016/j.devcel.2012.04.012.

Nutzungsbedingungen

EMBL Pressemitteilungen, Photos, Grafiken und Videos unterliegen dem EMBL copyright. Sie können für nicht-kommerzielle Nutzung frei reproduziert und verbreitet werden. Wir bitten um Nennung der Autoren und Institution. Hochauflösende Bilder können von folgender Internetseite heruntergeladen werden: www.embl.org.

Deutsch Kontakt:
Lena Raditsch
Meyerhofstr. 1, 69117 Heidelberg, Deutschland
Tel.: +49 (0)6221 387 8443
Fax: +49 (0)6221 387 8525
lena.raditsch@embl.de
Sonia Furtado Neves
EMBL Press Officer
Meyerhofstr. 1, 69117 Heidelberg, Germany
Tel.: +49 (0)6221 387 8263
Fax: +49 (0)6221 387 8525
sonia.furtado@embl.de

Sonia Furtado Neves | EMBL Research News
Weitere Informationen:
http://www.embl.org

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterieller Untermieter macht Blattnahrung für Käfer verdaulich
17.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Neues Werkzeug für gezielten Proteinabbau
17.11.2017 | Max-Planck-Institut für biophysikalische Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte