Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erstes Ionisationspotenzial von Lawrencium gemessen

09.04.2015

Messung bestätigt Position von Lawrencium als letztes Mitglied der Actinoiden und untermauert Architektur des Periodensystems

Mit einer neuartigen Kombination weiterentwickelter Techniken ist es einer internationalen Forscherkollaboration gelungen, das erste Ionisationspotenzial von Lawrencium zu messen. Bei Lawrencium – Element 103 – handelt es sich um ein radioaktives Element, das nur künstlich hergestellt werden kann.


Periodensystem der Elemente mit Lanthanoiden (Ln) und Actinoiden (An). Die Höhe der Säulen spiegelt die Energie des ersten Ionisationspotenzials wider. Das Ergebnis für Lawrencium (Lr) in der erstmaligen Messung ist rot dargestellt. Die Bindung des am schwächsten gebundenen Valenzelektrons in Lawrencium ist kleiner als in allen anderen Actinoiden und in allen Lanthanoiden.

Abb.: Kazuaki Tsukada, JAEA

Es ist das schwerste Element der Actinoiden, zu denen 15 Elemente mit ähnlichen Eigenschaften gehören, darunter auch Uran und Plutonium. Unter der Leitung von Wissenschaftlern der Japan Atomic Energy Agency (JAEA) in Tokai hat das Forscherteam das erste Ionisationspotenzial von Lawrencium mit 4,96 Elektronenvolt bestimmt.

Das erste Ionisationspotenzial gibt an, welche Energie nötig ist, um das am schwächsten gebundene Elektron aus einem neutralen Atom zu entfernen. "Wir zeigen, dass die Energie zum Ablösen des äußersten Elektrons bei Lawrencium wie erwartet am geringsten von allen Actinoiden ist", erklärt Univ.-Prof. Dr. Christoph Düllmann von der Johannes Gutenberg-Universität Mainz (JGU).

Dies bestätigt die Position von Lawrencium als letztes Mitglied in der Reihe der Actinoiden und untermauert die Architektur des Periodensystems der Elemente.

Die chemischen Eigenschaften eines Elements hängen hauptsächlich von der Elektronenkonfiguration in der äußersten besetzten Schale ab. Effekte der Speziellen Relativitätstheorie beeinflussen die Elektronenstruktur bei den Elementen am Ende des Periodensystems sehr stark, was sich in vielen Fällen direkt auf die chemischen Eigenschaften auswirkt. Das Studium dieses Einflusses ist ein Hauptziel chemischer und atomphysikalischer Experimente mit diesen Elementen.

Das Element mit Ordnungszahl 103, Lawrencium, hat seit der Einführung des "Actinoidenkonzepts" – die dramatischste Revision in der jüngeren Geschichte des Periodensystems durch Glenn T. Seaborg in den 1940er-Jahren – eine äußerst wichtige Rolle als letztes Mitglied der Actinoiden gespielt.

Diese spezielle Stellung hat das Element in den Fokus von Untersuchungen gerückt, um einerseits den Einfluss relativistischer Effekte zu bestimmen und andererseits die Eigenschaften zu ermitteln, die seine Stellung als tatsächlich letztes Element der Actinoiden bestätigen. Dabei wurde erwartet, dass Lawrencium, analog zu Lutetium als letztem Element der Lanthanoiden, ein sehr niedriges Ionisationspotenzial besitzt, das stark durch relativistische Effekte beeinflusst ist. Der Nachweis ist jedoch außerordentlich kompliziert.

Lawrencium kann nur in Form einzelner Atome an Schwerionenbeschleunigern produziert werden. Als Erschwernis für Experimente kommt hinzu, dass alle bekannten Isotope kurzlebig sind. Deshalb gibt es nur wenige experimentelle Studien und die Untersuchungen beschränken sich bislang auf einige ausgewählte chemische Eigenschaften.

Für das jetzt am JAEA-Tandembeschleuniger durchgeführte Experiment haben die beteiligten Kernchemiker eine neue Kombination weiterentwickelter Methoden und Techniken ausgenutzt, die erstmals eine Messung des ersten Ionisationspotenzials von Lawrencium ermöglichte.

Hierzu hat das Institut für Kernchemie der Johannes Gutenberg-Universität Mainz exotisches Californium-Targetmaterial (Element 98) aufgereinigt und bereitgestellt. Das Material wurde in Japan zu einem Target verarbeitet und dann mit einem Bor-Ionenstrahl (Element 5) bestrahlt.

In Ergänzung zu dem Experiment wurden unter der Leitung einer Wissenschaftlerin des Helmholtz-Instituts Mainz (HIM) in Zusammenarbeit mit Partnern der Tel Aviv University, Israel, theoretische Rechnungen mit den aktuellsten quantenchemischen Methoden zum Wert des Ionisationspotenzials durchgeführt. Die sehr gute Übereinstimmung zwischen dem berechneten und gemessenen Resultat bestätigt diese Berechnungen.

"Unsere experimentelle Technik eröffnet neue Perspektiven für ähnliche Untersuchungen noch exotischerer, superschwerer Elemente", so die Erwartungen der Wissenschaftler. An der Untersuchung beteiligt waren die JAEA, das Institut für Kernchemie der JGU, das HIM, das GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, CERN in Genf, Schweiz, die japanischen Universitäten Ibaraki, Niigata und Hiroshima, die Massey University in Auckland, Neuseeland, und die Tel Aviv University, Israel. Die neuen Resultate wurden im Wissenschaftsjournal NATURE publiziert.

Veröffentlichung:
Tetsuya K. Sato et al.
Measurement of the first ionization potential of lawrencium, element 103
NATURE 520, 209-211, 9. April 2015
DOI: 10.1038/nature14342
http://www.nature.com/nature/journal/v520/n7546/full/nature14342.html

Abbildungen/Fotos:
http://www.uni-mainz.de/bilder_presse/09_kernchemie_lawrencium_01.jpg
Periodensystem der Elemente mit Lanthanoiden (Ln) und Actinoiden (An). Die Höhe der Säulen spiegelt die Energie des ersten Ionisationspotenzials wider. Das Ergebnis für Lawrencium (Lr) in der erstmaligen Messung ist rot dargestellt. Die Bindung des am schwächsten gebundenen Valenzelektrons in Lawrencium ist kleiner als in allen anderen Actinoiden und in allen Lanthanoiden.
Abb.: Kazuaki Tsukada, JAEA

http://www.uni-mainz.de/bilder_presse/09_kernchemie_lawrencium_02.jpg
Ionisationspotenzial von schweren Lanthanoiden (schwarz) und Actinoiden (rot) mit dem aktuellen Ergebnis für Lawrencium (Lr). Symbole mit vollem Kreis geben jeweils experimentelle Werte an, Ringsymbole den geschätzten Wert. Die beiden Werte für Lawrencium zeigen die hervorragende Übereinstimmung zwischen Theorie und Experiment.
Abb.: Tetsuya K. Sato, JAEA

http://www.uni-mainz.de/bilder_presse/09_kernchemie_lawrencium_03.jpg
Die Ionisationskavität mit dem von zwei Heizfilamenten umwickelten grauen Tantalröhrchen in der Bildmitte gehört zu der neu entwickelten Oberflächen-Ionenquelle, die im JAEA-ISOL-System am JAEA-Tandembeschleuniger installiert ist.
Foto: Tetsuya K. Sato, JAEA

Weitere Informationen:
Univ.-Prof. Dr. Christoph Düllmann
Institut für Kernchemie
Johannes Gutenberg-Universität Mainz (JGU)
55099 Mainz
Tel. 06131 39-25852
Fax 06131 39-20811
E-Mail: duellmann@uni-mainz.de
http://www.kernchemie.uni-mainz.de

Weitere Informationen:

http://www.nature.com/news/exotic-atom-struggles-to-find-its-place-in-the-period... – NATURE-Artikel "Exotic atom struggles to find its place in the periodic table" zur Veröffentlichung

http://www.nature.com/nature/journal/v520/n7546/full/520166a.html – Begleitartikel "Nuclear chemistry: Lawrencium bridges a knowledge gap" in NATURE

http://www.superheavies.de/deutsch/willkommen.htm – Superschwere Elemente SHE Chemie

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen