Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erstes Ionisationspotenzial von Lawrencium gemessen

09.04.2015

Messung bestätigt Position von Lawrencium als letztes Mitglied der Actinoiden und untermauert Architektur des Periodensystems

Mit einer neuartigen Kombination weiterentwickelter Techniken ist es einer internationalen Forscherkollaboration gelungen, das erste Ionisationspotenzial von Lawrencium zu messen. Bei Lawrencium – Element 103 – handelt es sich um ein radioaktives Element, das nur künstlich hergestellt werden kann.


Periodensystem der Elemente mit Lanthanoiden (Ln) und Actinoiden (An). Die Höhe der Säulen spiegelt die Energie des ersten Ionisationspotenzials wider. Das Ergebnis für Lawrencium (Lr) in der erstmaligen Messung ist rot dargestellt. Die Bindung des am schwächsten gebundenen Valenzelektrons in Lawrencium ist kleiner als in allen anderen Actinoiden und in allen Lanthanoiden.

Abb.: Kazuaki Tsukada, JAEA

Es ist das schwerste Element der Actinoiden, zu denen 15 Elemente mit ähnlichen Eigenschaften gehören, darunter auch Uran und Plutonium. Unter der Leitung von Wissenschaftlern der Japan Atomic Energy Agency (JAEA) in Tokai hat das Forscherteam das erste Ionisationspotenzial von Lawrencium mit 4,96 Elektronenvolt bestimmt.

Das erste Ionisationspotenzial gibt an, welche Energie nötig ist, um das am schwächsten gebundene Elektron aus einem neutralen Atom zu entfernen. "Wir zeigen, dass die Energie zum Ablösen des äußersten Elektrons bei Lawrencium wie erwartet am geringsten von allen Actinoiden ist", erklärt Univ.-Prof. Dr. Christoph Düllmann von der Johannes Gutenberg-Universität Mainz (JGU).

Dies bestätigt die Position von Lawrencium als letztes Mitglied in der Reihe der Actinoiden und untermauert die Architektur des Periodensystems der Elemente.

Die chemischen Eigenschaften eines Elements hängen hauptsächlich von der Elektronenkonfiguration in der äußersten besetzten Schale ab. Effekte der Speziellen Relativitätstheorie beeinflussen die Elektronenstruktur bei den Elementen am Ende des Periodensystems sehr stark, was sich in vielen Fällen direkt auf die chemischen Eigenschaften auswirkt. Das Studium dieses Einflusses ist ein Hauptziel chemischer und atomphysikalischer Experimente mit diesen Elementen.

Das Element mit Ordnungszahl 103, Lawrencium, hat seit der Einführung des "Actinoidenkonzepts" – die dramatischste Revision in der jüngeren Geschichte des Periodensystems durch Glenn T. Seaborg in den 1940er-Jahren – eine äußerst wichtige Rolle als letztes Mitglied der Actinoiden gespielt.

Diese spezielle Stellung hat das Element in den Fokus von Untersuchungen gerückt, um einerseits den Einfluss relativistischer Effekte zu bestimmen und andererseits die Eigenschaften zu ermitteln, die seine Stellung als tatsächlich letztes Element der Actinoiden bestätigen. Dabei wurde erwartet, dass Lawrencium, analog zu Lutetium als letztem Element der Lanthanoiden, ein sehr niedriges Ionisationspotenzial besitzt, das stark durch relativistische Effekte beeinflusst ist. Der Nachweis ist jedoch außerordentlich kompliziert.

Lawrencium kann nur in Form einzelner Atome an Schwerionenbeschleunigern produziert werden. Als Erschwernis für Experimente kommt hinzu, dass alle bekannten Isotope kurzlebig sind. Deshalb gibt es nur wenige experimentelle Studien und die Untersuchungen beschränken sich bislang auf einige ausgewählte chemische Eigenschaften.

Für das jetzt am JAEA-Tandembeschleuniger durchgeführte Experiment haben die beteiligten Kernchemiker eine neue Kombination weiterentwickelter Methoden und Techniken ausgenutzt, die erstmals eine Messung des ersten Ionisationspotenzials von Lawrencium ermöglichte.

Hierzu hat das Institut für Kernchemie der Johannes Gutenberg-Universität Mainz exotisches Californium-Targetmaterial (Element 98) aufgereinigt und bereitgestellt. Das Material wurde in Japan zu einem Target verarbeitet und dann mit einem Bor-Ionenstrahl (Element 5) bestrahlt.

In Ergänzung zu dem Experiment wurden unter der Leitung einer Wissenschaftlerin des Helmholtz-Instituts Mainz (HIM) in Zusammenarbeit mit Partnern der Tel Aviv University, Israel, theoretische Rechnungen mit den aktuellsten quantenchemischen Methoden zum Wert des Ionisationspotenzials durchgeführt. Die sehr gute Übereinstimmung zwischen dem berechneten und gemessenen Resultat bestätigt diese Berechnungen.

"Unsere experimentelle Technik eröffnet neue Perspektiven für ähnliche Untersuchungen noch exotischerer, superschwerer Elemente", so die Erwartungen der Wissenschaftler. An der Untersuchung beteiligt waren die JAEA, das Institut für Kernchemie der JGU, das HIM, das GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, CERN in Genf, Schweiz, die japanischen Universitäten Ibaraki, Niigata und Hiroshima, die Massey University in Auckland, Neuseeland, und die Tel Aviv University, Israel. Die neuen Resultate wurden im Wissenschaftsjournal NATURE publiziert.

Veröffentlichung:
Tetsuya K. Sato et al.
Measurement of the first ionization potential of lawrencium, element 103
NATURE 520, 209-211, 9. April 2015
DOI: 10.1038/nature14342
http://www.nature.com/nature/journal/v520/n7546/full/nature14342.html

Abbildungen/Fotos:
http://www.uni-mainz.de/bilder_presse/09_kernchemie_lawrencium_01.jpg
Periodensystem der Elemente mit Lanthanoiden (Ln) und Actinoiden (An). Die Höhe der Säulen spiegelt die Energie des ersten Ionisationspotenzials wider. Das Ergebnis für Lawrencium (Lr) in der erstmaligen Messung ist rot dargestellt. Die Bindung des am schwächsten gebundenen Valenzelektrons in Lawrencium ist kleiner als in allen anderen Actinoiden und in allen Lanthanoiden.
Abb.: Kazuaki Tsukada, JAEA

http://www.uni-mainz.de/bilder_presse/09_kernchemie_lawrencium_02.jpg
Ionisationspotenzial von schweren Lanthanoiden (schwarz) und Actinoiden (rot) mit dem aktuellen Ergebnis für Lawrencium (Lr). Symbole mit vollem Kreis geben jeweils experimentelle Werte an, Ringsymbole den geschätzten Wert. Die beiden Werte für Lawrencium zeigen die hervorragende Übereinstimmung zwischen Theorie und Experiment.
Abb.: Tetsuya K. Sato, JAEA

http://www.uni-mainz.de/bilder_presse/09_kernchemie_lawrencium_03.jpg
Die Ionisationskavität mit dem von zwei Heizfilamenten umwickelten grauen Tantalröhrchen in der Bildmitte gehört zu der neu entwickelten Oberflächen-Ionenquelle, die im JAEA-ISOL-System am JAEA-Tandembeschleuniger installiert ist.
Foto: Tetsuya K. Sato, JAEA

Weitere Informationen:
Univ.-Prof. Dr. Christoph Düllmann
Institut für Kernchemie
Johannes Gutenberg-Universität Mainz (JGU)
55099 Mainz
Tel. 06131 39-25852
Fax 06131 39-20811
E-Mail: duellmann@uni-mainz.de
http://www.kernchemie.uni-mainz.de

Weitere Informationen:

http://www.nature.com/news/exotic-atom-struggles-to-find-its-place-in-the-period... – NATURE-Artikel "Exotic atom struggles to find its place in the periodic table" zur Veröffentlichung

http://www.nature.com/nature/journal/v520/n7546/full/520166a.html – Begleitartikel "Nuclear chemistry: Lawrencium bridges a knowledge gap" in NATURE

http://www.superheavies.de/deutsch/willkommen.htm – Superschwere Elemente SHE Chemie

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zebras: Immer der Erinnerung nach
24.05.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Wichtiges Regulator-Gen für die Bildung der Herzklappen entdeckt
24.05.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten