Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erster Direkt-Nachweis des Elementes Fluor in der Natur

05.07.2012
Fluor ist das reaktivste aller chemischen Elemente. Es kommt daher in der Natur nicht elementar vor sondern nur gebunden, beispielweise als Fluorit – so war bislang die Lehrmeinung.
Ein besonderer Fluorit, der „Stinkspat“ jedoch sorgt seit fast 200 Jahren für Diskussionsstoff. Das Mineral verströmt beim Zerkleinern einen intensiven Geruch. Nun konnten Wissenschaftler der Technischen Universität München (TUM) und der Ludwig-Maximilians-Universität München (LMU) im Stinkspat erstmals direkt natürliches, elementares Fluor nachweisen. Über ihre Ergebnisse berichten sie in der Fachzeitschrift Angewandte Chemie.

Fluor ist das reaktivste aller chemischen Elemente und nur mit größter Vorsicht zu handhaben. Es ist so aggressiv, dass selbst Laborglasgeräte ihm nicht widerstehen können und sogar Ziegelsteine mit Fluorgas brennen. Dabei findet elementares Fluor breite industrielle Anwendung vom Korrosionsschutz, über Diffusionsbarrieren in Kraftstofftanks bis hin zur Erzeugung von Schwefelhexafluorid, das beispielsweise als Isolator in Hochspannungsschaltern dient.

Aufgrund seiner extremen Eigenschaften waren Chemiker bislang überzeugt davon, dass Fluor in der Natur nicht elementar, sondern nur als Fluorid-Ion vorkommen kann, wie zum Beispiel in Mineralien wie Fluorit (CaF2), auch als Flussspat bezeichnet. Eine besondere Varietät des Fluorits, der beispielsweise in der Grube „Maria“ in Wölsendorf in der Oberpfalz vorkommende, sogenannte „Stinkspat“, sorgte seit fast 200 Jahren für Streit in der Fachwelt. Beim Zerkleinern verströmt er einen stechend unangenehmen Geruch.

Eine Reihe bedeutender Chemiker, darunter auch Friedrich Wöhler (1800-1882) und Justus von Liebig (1803-1873), diskutierten verschiedene Substanzen als Ursachen für den Geruch. Aus einfachen Riechproben, chemischen Nachweisen bis hin zu aufwändigen massenspektrometrischen Untersuchungen zogen Wissenschaftler im Laufe der Jahre die unterschiedlichsten Schlussfolgerungen. So wurden neben elementarem Fluor auch Iod, Ozon, Phosphor-, Arsen-, Schwefel- und Selenverbindungen, Chlor, hypochlorige Säure und fluorierte Kohlenwasserstoffe für den Geruch verantwortlich gemacht. Ein direkter Nachweis, dass Fluor im Stinkspat eingeschlossen ist und nicht etwa erst beim Zerkleinern entsteht, fehlte allerdings bislang.

Nun gelang es einem Wissenschaftlerteam um Florian Kraus, Leiter der Arbeitsgruppe Fluorchemie am Department Chemie der Technischen Universität München, und um Jörn Schmedt auf der Günne, Leiter der Emmy-Noether Arbeitsgruppe für Festkörper-NMR am Department Chemie der Ludwig-Maximilians-Universität München, erstmals elementares Fluor im Stinkspat direkt und zweifelsfrei nachzuweisen. Mit Hilfe der 19F-Kernmagnetresonanz-Spektroskopie (NMR-Spektroskopie) konnten sie das Fluor „in-situ“, also zerstörungsfrei in seiner natürlichen Umgebung identifizieren und so der langen Diskussion um die Ursache des Geruchs im Stinkspat ein Ende setzen.

„Es ist nicht verwunderlich, dass Chemiker so lange an der Existenz von elementarem Fluor im Stinkspat zweifelten“, erklären die Forscher. „Denn dass elementares Fluor und Kalzium, die normalerweise sofort miteinander reagieren, hier nebeneinander vorliegen, ist tatsächlich kaum zu glauben.“ Im Fall des Stinkspats liegen jedoch besondere Verhältnisse vor: Das elementare Fluor entsteht durch feine Uraneinschlüsse im Mineral, die konstant ionisierende Strahlung abgeben und so den Fluorit in Kalzium und elementares Fluor aufspalten. Das Fluor liegt dann, durch nicht-reaktiven Fluorit vom Kalzium getrennt, in kleinen Einschlüssen vor und bleibt so in elementarer Form erhalten. Durch die ionisierende Strahlung kommt es zur Ausbildung von Kalziumclustern und damit zur dunklen Farbe des Stinkspats.

Originalpublikation:
Elementares Fluor F2 in der Natur – In Situ Nachweis und Quantifizierung, Jörn Schmedt auf der Günne, Martin Mangstl und Florian Kraus, Angewandte Chemie, Early View, 4. Juli 2012, DOI: 10.1002/ange.201203515
Kontakt:

Priv.-Doz. Dr. Florian Kraus
Technische Universität München
Department Chemie, AG Fluorchemie
Lichtenbergstraße 4,
85747 Garching, Germany
Tel.: +49 89 289 13109 od. -13091
Fax.: +49 89 289 13762
E-Mail: fluorchemie@tum.de
Dr. Jörn Schmedt auf der Günne
Ludwig-Maximilians-Universität München
Department Chemie – AG Festkörper NMR
Butenandtstr. 5-13 (Block D)
81377 München, Germany
Tel.: +49 89 2180 77433
Fax: +49 89 2180 77440
E-Mail: gunnej@cup.uni-muenchen.de

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.uni-muenchen.de
http://www.ch.tum.de/fkraus/kraus.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie