Erster Direkt-Nachweis des Elementes Fluor in der Natur

&quot;Stinkspat&quot;<br>Foto: Dr. Rupert Hochleitner, Mineralogische Staatssammlung München<br>

Ein besonderer Fluorit, der „Stinkspat“ jedoch sorgt seit fast 200 Jahren für Diskussionsstoff. Das Mineral verströmt beim Zerkleinern einen intensiven Geruch. Nun konnten Wissenschaftler der Technischen Universität München (TUM) und der Ludwig-Maximilians-Universität München (LMU) im Stinkspat erstmals direkt natürliches, elementares Fluor nachweisen. Über ihre Ergebnisse berichten sie in der Fachzeitschrift Angewandte Chemie.

Fluor ist das reaktivste aller chemischen Elemente und nur mit größter Vorsicht zu handhaben. Es ist so aggressiv, dass selbst Laborglasgeräte ihm nicht widerstehen können und sogar Ziegelsteine mit Fluorgas brennen. Dabei findet elementares Fluor breite industrielle Anwendung vom Korrosionsschutz, über Diffusionsbarrieren in Kraftstofftanks bis hin zur Erzeugung von Schwefelhexafluorid, das beispielsweise als Isolator in Hochspannungsschaltern dient.

Aufgrund seiner extremen Eigenschaften waren Chemiker bislang überzeugt davon, dass Fluor in der Natur nicht elementar, sondern nur als Fluorid-Ion vorkommen kann, wie zum Beispiel in Mineralien wie Fluorit (CaF2), auch als Flussspat bezeichnet. Eine besondere Varietät des Fluorits, der beispielsweise in der Grube „Maria“ in Wölsendorf in der Oberpfalz vorkommende, sogenannte „Stinkspat“, sorgte seit fast 200 Jahren für Streit in der Fachwelt. Beim Zerkleinern verströmt er einen stechend unangenehmen Geruch.

Eine Reihe bedeutender Chemiker, darunter auch Friedrich Wöhler (1800-1882) und Justus von Liebig (1803-1873), diskutierten verschiedene Substanzen als Ursachen für den Geruch. Aus einfachen Riechproben, chemischen Nachweisen bis hin zu aufwändigen massenspektrometrischen Untersuchungen zogen Wissenschaftler im Laufe der Jahre die unterschiedlichsten Schlussfolgerungen. So wurden neben elementarem Fluor auch Iod, Ozon, Phosphor-, Arsen-, Schwefel- und Selenverbindungen, Chlor, hypochlorige Säure und fluorierte Kohlenwasserstoffe für den Geruch verantwortlich gemacht. Ein direkter Nachweis, dass Fluor im Stinkspat eingeschlossen ist und nicht etwa erst beim Zerkleinern entsteht, fehlte allerdings bislang.

Nun gelang es einem Wissenschaftlerteam um Florian Kraus, Leiter der Arbeitsgruppe Fluorchemie am Department Chemie der Technischen Universität München, und um Jörn Schmedt auf der Günne, Leiter der Emmy-Noether Arbeitsgruppe für Festkörper-NMR am Department Chemie der Ludwig-Maximilians-Universität München, erstmals elementares Fluor im Stinkspat direkt und zweifelsfrei nachzuweisen. Mit Hilfe der 19F-Kernmagnetresonanz-Spektroskopie (NMR-Spektroskopie) konnten sie das Fluor „in-situ“, also zerstörungsfrei in seiner natürlichen Umgebung identifizieren und so der langen Diskussion um die Ursache des Geruchs im Stinkspat ein Ende setzen.

„Es ist nicht verwunderlich, dass Chemiker so lange an der Existenz von elementarem Fluor im Stinkspat zweifelten“, erklären die Forscher. „Denn dass elementares Fluor und Kalzium, die normalerweise sofort miteinander reagieren, hier nebeneinander vorliegen, ist tatsächlich kaum zu glauben.“ Im Fall des Stinkspats liegen jedoch besondere Verhältnisse vor: Das elementare Fluor entsteht durch feine Uraneinschlüsse im Mineral, die konstant ionisierende Strahlung abgeben und so den Fluorit in Kalzium und elementares Fluor aufspalten. Das Fluor liegt dann, durch nicht-reaktiven Fluorit vom Kalzium getrennt, in kleinen Einschlüssen vor und bleibt so in elementarer Form erhalten. Durch die ionisierende Strahlung kommt es zur Ausbildung von Kalziumclustern und damit zur dunklen Farbe des Stinkspats.

Originalpublikation:
Elementares Fluor F2 in der Natur – In Situ Nachweis und Quantifizierung, Jörn Schmedt auf der Günne, Martin Mangstl und Florian Kraus, Angewandte Chemie, Early View, 4. Juli 2012, DOI: 10.1002/ange.201203515
Kontakt:

Priv.-Doz. Dr. Florian Kraus
Technische Universität München
Department Chemie, AG Fluorchemie
Lichtenbergstraße 4,
85747 Garching, Germany
Tel.: +49 89 289 13109 od. -13091
Fax.: +49 89 289 13762
E-Mail: fluorchemie@tum.de
Dr. Jörn Schmedt auf der Günne
Ludwig-Maximilians-Universität München
Department Chemie – AG Festkörper NMR
Butenandtstr. 5-13 (Block D)
81377 München, Germany
Tel.: +49 89 2180 77433
Fax: +49 89 2180 77440
E-Mail: gunnej@cup.uni-muenchen.de

Media Contact

Dr. Ulrich Marsch Technische Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer