Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erster Atemzug prägt Immunsystem nachhaltig

22.02.2017

Mit dem ersten Atemzug entfalten sich die Lungen schlagartig um mit der Sauerstoffaufnahme zu beginnen. Nun strömen aber auch Schadstoffe und Mikroorganismen ein - spezielle Abwehrsysteme müssen die Lunge ab jetzt vor Schaden und Infektionen bewahren, dabei aber gleichzeitig den Sauerstofftransport aufrecht erhalten. Wie sich diese vielfältigen Funktionen des Immunsystems nach der Geburt entwickeln, war bisher kaum bekannt. WissenschaftlerInnen des CeMM und der Medizinischen Universität Wien konnten erstmals aufklären, wie spezielle Signalstoffe, , ausgelöst durch die erstmalige Lungenentfaltung, die Immunzellen der Lunge ein Leben lang prägen und Einfluss auf die Bakterienabwehr nehmen.

Die Lunge ist eine wichtige Schnittstelle zwischen dem Körperinnerem und der Außenwelt: Ihre etwa hundert Quadratmeter große Oberfläche filtert mit jedem Atemzug lebenswichtigen Sauerstoff aus der Luft, während sie Kohlendioxid zum Ausatmen freigibt. Über 10.000 Liter Luft atmet ein erwachsener Mensch jeden Tag ein und aus. Doch das bringt auch Probleme mit sich: Viren, Bakterien und andere Schadstoffe der Luft müssen davon abgehalten werden, sich in der Lunge einzunisten oder in den Körper einzudringen.


Querschnitt der Lunge einer Maus kurz nach der Geburt, IL-33 ist grün eingefärbt

Simona Saluzzo/CeMM


Graphische Zusammenfassung der Studie

Simona Saluzzo/CeMM

Zu diesem Zweck besitzt die Lunge ein eigenes Arsenal an hochspezialisierten Immunzellen, die ein komplexes Gleichgewicht zwischen ständiger Abwehrbereitschaft und Eindämmung überbordender Immunreaktionen aufrechterhalten. Wie sich diese fein abgestimmte Homöostase nach der Geburt einstellt, war bisher kaum erforscht.

Die Forschungsgruppe von Sylvia Knapp, Direktorin für Medizinische Angelegenheiten am CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften und Professorin für Infektionsbiologie an der Medizinischen Universität Wien, konnte nun in Mäusen zeigen, dass direkt nach dem ersten Atemzug entscheidende Signale gesetzt werden, die zu tiefgreifenden Veränderungen in der Lunge führen.

In der im Fachmagazin Cell Reports publizierten Studie (DOI:10.1016/j.celrep.2017.01.071) haben die WissenschaftlerInnen herausgefunden, dass die Aufblähung der Lunge beim ersten Atemzug zur Ausschüttung des Zytokins Interleukin (IL)-33 führt. Dieses Signalmolekül hat einen weitreichenden Effekt: Spezielle weiße Blutkörperchen, sogenannte lymphoide Typ-2 Zellen (ILC2), werden aktiviert und wandern in die Lunge ein. Dort schütten sie Il-13, ein weiteres Signalmolekül, aus, das schließlich die wichtigsten Immunzellen in den Atemwegen, die Alveolarmakrophagen, für ihre spezielle Aufgabe in der Lunge vorbereitet.

„ILC2-Zellen spielen eine wichtige Rolle in der Abwehr von Parasiten oder Influenza-Viren, ihre Bedeutung für die Homöostase der Lunge war bisher aber nicht bekannt“, erklärt die Erstautorin Simona Saluzzo, PhD-Studentin am CeMM und der MedUni Wien im Rahmen des CCHD Programms. „Jetzt erst verstehen wir, dass ILC2 unmittelbar nach der Geburt wichtige Instruktionen an Alveolarmakrophagen weiterleiten, damit diese Entzündungen eindämmen und die Immunantwort drosseln, um sicherzustellen, dass die Lungen für den Gasaustausch intakt und gesund bleiben“.

Dieser Mechanismus schützt zwar vor überschießenden Entzündungen – birgt jedoch auch Risiken, betont Sylvia Knapp. „Wir konnten in dieser Studie zeigen, dass die von uns beschriebenen Mechanismen zwar essentiell sind, um unmittelbar nach der Geburt eine Beruhigung des Immunsystems der Lunge zu erreichen. Gleichzeitig erhöhen sie aber auch die Anfälligkeit für Infektionen mit z.B. Pneumokokken. Was also gut für die Funktion und den Gasaustausch in der Lunge ist, erklärt gleichzeitig, warum durch Bakterien verursachte Lungenentzündung die häufigste Todesursache durch eine Infektion in der westlichen Welt ist“.

Die Studie „First-breath induced type-2 pathways shape the lung immune environment“ erschien in der Zeitschrift Cell Reports am 21. Februar 2017. DOI:10.1016/j.celrep.2017.01.071

Autoren: Simona Saluzzo, Anna-Dorothea Gorki, Batika M. J. Rana, Rui Martins, Seth Scanlon, Philipp Starkl, Karin Lakovits, Anastasiya Hladik, Ana Korosec, Omar Sharif, Joanna M. Warszawska, Helen Jolin, Ildiko Mesteri, Andrew N. J. McKenzie und Sylvia Knapp.

Förderung: Die Studie wurde vom FWF der Wissenschaftsfonds (DK CCHD), dem Wiener Wissenschafts-, Forschungs- und Technologiefonds, dem Medical Research Council (MRC) und dem Wellcome Trust gefördert.

Sylvia Knapp studierte Medizin in Wien und Berlin, absolvierte ihre Facharztausbildung in Innerer Medizin in Wien, bevor sie ein PhD-Studium an der Universität von Amsterdam anschloss. 2006 wurde sie Forschungsgruppenleiterin am CeMM, 2012 trat sie die Professur für Infektionsbiologie an der Medizinischen Universität Wien an. Seit 2015 ist sie Direktorin für Medizinische Angelegenheiten am CeMM.

Das CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften ist eine internationale, unabhängige und interdisziplinäre Forschungseinrichtung für molekulare Medizin unter der wissenschaftlichen Leitung von Giulio Superti-Furga. Das CeMM orientiert sich an den medizinischen Erfordernissen und integriert Grundlagenforschung sowie klinische Expertise, um innovative diagnostische und therapeutische Ansätze für eine Präzisionsmedizin zu entwickeln. Die Forschungsschwerpunkte sind Krebs, Entzündungen, Stoffwechsel- und Immunstörungen sowie seltene Erkrankungen. Das Forschungsgebäude des Instituts befindet sich am Campus der Medizinischen Universität und des Allgemeinen Krankenhauses Wien. www.cemm.at

Die Medizinische Universität Wien (MedUni Wien) ist eine der traditionsreichsten medizinischen Ausbildungs- und Forschungsstätten Europas. Mit rund 8.000 Studierenden ist sie heute die größte medizinische Ausbildungsstätte im deutschsprachigen Raum. Mit 5.500 MitarbeiterInnen, 27 Universitätskliniken und etlichen medizintheoretischen Zentren und hochspezialisierten Laboratorien zählt sie zu den bedeutendsten Forschungsinstitutionen Europas im biomedizinischen Bereich. Der klinische und forscherische Schwerpunkt der Medizinischen Universität liegt auf den Themen Immunologie, Neurobiologie, Imaging, Onkologie und Herz-Kreislauferkrankungen. www.meduniwien.ac.at

Für Rückfragen wenden Sie sich bitte an:
Mag. Wolfgang Däuble
Media Relations Manager

CeMM
Research Center for Molecular Medicine
of the Austrian Academy of Sciences
Lazarettgasse 14, AKH BT 25.3
1090 Vienna, Austria
Phone +43-1/40160-70 057
Fax +43-1/40160-970 000
wdaeuble@cemm.oeaw.ac.at

www.cemm.at

Mag. Wolfgang Däuble | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik