Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erste Koordination mehrerer CO-Moleküle an ein Nichtmetall-Atom

18.06.2015

Würzburger Forschern ist es erstmals gelungen, mehrere Kohlenstoffmonoxid-Moleküle mit dem Hauptgruppen-Element Bor zu verbinden. Darüber berichten sie in der morgen erscheinenden Ausgabe des Fachmagazins Nature.

Wissenschaftlern aus der Arbeitsgruppe von Professor Holger Braunschweig vom Institut für Anorganische Chemie an der Uni Würzburg ist es erstmals gelungen, in direkter Synthese zwei Kohlenstoffmonoxid-Moleküle (CO) mit dem Hauptgruppenelement Bor zu verbinden. Das Ergebnis ist ein Borylen-Dicarbonyl-Komplex.


Molekülstruktur des Borylen-Dicarbonyls im Festkörper, bestimmt durch Röntgenstrukturanalyse

(Bild: Dr. Florian Hupp and Dr. Krzysztof Radacki)

In der Regel sind solche Komplexe – oder Koordinationsverbindungen – aus einem oder mehreren Zentralteilchen und einem oder mehreren Liganden aufgebaut. Die Zentralteilchen sind dabei meist Atome von Übergangsmetallen.

"Es ist schon außergewöhnlich, dass man ein CO-Molekül an ein Hauptgruppen-Element binden kann. Zwei an ein und dasselbe Nichtmetall-Atom zu koordinieren, ist besonders außergewöhnlich", sagt Chemiker Rian Dewhurst. Dewhurst, der im Team von Professor Holger Braunschweig arbeitet, hat den Artikel gemeinsam mit mehreren Koautoren eingereicht. Es ist die erste Arbeit des Instituts, die vom Fachmagazin Nature akzeptiert wurde.

"In der Zukunft könnten Borylen-Dicarbonyle dazu genutzt werden, die Eigenschaften von Übergangsmetall-Carbonylkomplexen zu imitieren", sagt Dewhurst. Übergangsmetalle verfügen über besondere elektronische Eigenschaften. Diese Elemente aus den Gruppen vier bis zwölf im Periodensystem der Elemente sind in der Lage, relativ leicht mehrere Kohlenstoffmonoxid-Moleküle zu binden.

Vorteile von Bor-Verbindungen

Generell sind Bor-Verbindungen wichtig für verschiedene Anwendungen in der Industrie. Sie kommen unter anderem in katalytischen Prozessen, bei verschiedenen molekularen und Festkörpermaterialien oder bei der Herstellung von Medikamenten zum Einsatz. Ein Katalysator beschleunigt eine gewünschte chemische Reaktion, ohne dabei selbst verbraucht zu werden.

Ein Vorteil der Verwendung von Bor ist, dass es leicht und vergleichsweise günstig verfügbar ist. Es kommt in der Natur meist in mineralischer Form vor und wird unter anderem in den Boratminen in Kalifornien und der Türkei abgebaut. Zudem ist es für Menschen und andere Säugetiere ungiftig. "Dies macht es, zusammen mit seinen einzigartigen elektronischen Eigenschaften, sehr interessant für industrielle und andere kommerzielle Anwendungen", sagt Dewhurst.

Bor ist ein sehr reaktionsfreudiges Element. Mit drei Elektronen auf den Außenbahnen, strebt es nach Verbindungen, die acht Elektronen ermöglichen – so, wie es beispielsweise bei den Edelgasen Neon, Argon oder Xenon bereits im Grundzustand der Fall ist.

Freies Elektronenpaar am Zentralteilchen

Bei dem Borylen-Dicarbonyl-Komplex sind ebenfalls acht Elektronen an den Bindungen zum Boratom beteiligt. Während jeweils zwei die Bindung zu den zwei CO-Molekülen darstellen und zwei weitere einen Kohlenwasserstoffrest binden, konnten die Forscher ein freies Elektronenpaar etablieren, womit insgesamt acht Elektronen vorhanden sind. "Das freie Elektronenpaar ist das Besondere. Unser Rest sorgt für Stabilität. Er schirmt das Gebilde sozusagen ab", sagt Marco Nutz. Der Doktorand ergänzt: "Die meisten Verbindungen, die man in der Art isolieren kann, sind ohne Schutzatmosphäre instabil." Die Würzburger Entdeckung bleibt jedoch auch in "normaler" Umgebung, also unter Zutritt von Luft und Feuchtigkeit einige Tage stabil.

Dewhurst und Nutz betreiben Grundlagenforschung. "Jetzt werden wir die Verbindung, die wir vorgestellt haben, noch weiter untersuchen. Da verfolgen wir verschiedene Ansätze", sagt Dewhurst. Unter anderem wird dabei im Fokus stehen, die Eigenschaften von herkömmlichen Übergangsmetall-Carbonylkomplexen mit denen des Borylen-Carbonyl-Komplexes im Detail zu vergleichen.

Das Element Bor rückt seit einigen Jahren verstärkt in den Fokus der Naturwissenschaft. Die zunehmende Bedeutung des Elements Bor zeige sich laut Dewhurst auch im wachsenden Interesse der organischen Chemie an Bor und daran, dass auch die Materialwissenschaft immer aufmerksamer die Fortschritte im Bereich der Erforschung von Bor-Verbindungen verfolgt.

"Multiple Complexation of CO and Related Ligands to a Main Group Element" by Holger Braunschweig, Rian D. Dewhurst, Florian Hupp, Marco Nutz, Krzysztof Radacki, Christopher W. Tate, Alfredo Vargas, Qing Ye. Nature vol 522, issue 7556 pp.327-330, DOI 10.1038/nature14489

Kontakt:

Prof. Holger Braunschweig, Institut für Anorganische Chemie an der Universität Würzburg
T.: +49 931 31-88104, E-Mail: h.braunschweig@uni-wuerzburg.de

Weitere Informationen:

http://www.presse.uni-wuerzburg.de Pressestelle der Uni Würzburg

Marco Bosch | Julius-Maximilians-Universität Würzburg

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

nachricht Schimpansen belohnen Gefälligkeiten
23.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften