Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erste Filmaufnahmen von Kernporen

03.05.2016

Mithilfe eines extrem schnellen und präzisen Rasterkraftmikroskops haben Forscher der Universität Basel erstmals «lebendige» Kernporenkomplexe bei der Arbeit gefilmt. Kernporen sind molekulare Maschinen, die den Verkehr in und aus dem Zellkern kontrollieren. In ihrem kürzlich in «Nature Nanotechnology» publizierten Artikel erklären die Forscher, wie bewegliche «Tentakeln» in der Pore die Passage von unerwünschten Molekülen verhindern.

Das Rasterkraftmikroskop (AFM) ist kein Mikroskop zum Durchschauen. Es tastet wie ein Blinder mit seinen Fingern die Oberflächen mit einer extrem feinen Spitze ab und kann so selbst millionstel Millimeter kleine zelluläre Strukturen erkennen.


Videoaufnahmen mit Hochgeschwindigkeits-AFM zeigen native Kernporenkomplexe bei der Arbeit; der Massstabsbalken beträgt 10 Nanometer.

Universität Basel

So auch die Poren in der Hülle des Zellkerns. Normalerweise ist diese Messung langsam und benötigt für die Aufnahme eines einzelnen Bildes bis zu einer Minute. Moderne Hochgeschwindigkeits-AFM nehmen dagegen mehrere hundert Bilder pro Minute auf und können so Moleküle in Aktion filmen.

Mithilfe eines solchen Geräts konnte Roderick Lim, Argovia-Professor am Biozentrum und dem Swiss Nanoscience Institut der Universität Basel, nun nicht nur die selektive Barriere der Kernporen, sondern auch ihr dynamisches Verhalten sichtbar machen. Damit gelang es den Forschern, das langjährige Mysterium, wie unerwünschten Molekülen der Einlass zum Zellkern verwehrt wird, zu enträtseln.

Kernporenkomplexe steuern Passage von Molekülen

Die Struktur von Kernporen ist seit langem bekannt. Dabei handelt es sich nicht um einfache Löcher, sondern um wichtige Verkehrsknotenpunkte, die zu Tausenden die Hülle des Zellkerns durchziehen. Sie bestehen aus etwa 30 verschiedenen als Nukleoporine bezeichneten Proteinen, die einen Ring mit einem Transportkanal bilden.

Innerhalb der Pore bilden mehrere ungeordnete Proteine (FG-Nup) eine selektive, mit einem Filter vergleichbare Barriere. Während kleine Moleküle diese Barriere passieren können und so ins Kerninnere gelangen, werden grosse Proteine dagegen aufgehalten. Eine Ausnahme stellen Proteine dar, die im Zellkern zum Beispiel für die Reparatur oder Verdoppelung der Erbinformation gebraucht werden. Sie tragen ein spezielles «Adressschild» und werden mithilfe von Transportproteinen durch die Pore in den Zellkern geschleust.

Superschnelles AFM offenbart dynamische Vorgänge

«Mit dem Hochgeschwindigkeits-AFM konnten wir das erste Mal in die nur 40 Nanometer grossen Kernporenkomplexe hineinschauen», erklärt Lim. «Diese Methode ist wirklich bahnbrechend, denn damit konnten wir die einzelnen FG-Nups sehen und sie in Action filmen. Das war zuvor unmöglich!»

Um in das Innere der Pore hineinzugelangen, musste Yusuke Sakiyama, Doktorand in der Forschungsgruppe von Lim, auf jeder einzelnen Messspitze eine winzige Karbon-Nanofaser wachsen lassen. Mit den damit aufgenommenen Bildern, die zu kurzen Videosequenzen zusammenfügt wurden, konnten die Forscher nun erstmals die «lebensechte» Dynamik biologischer Vorgänge auf Nanoebene beobachten.

Barriere aus wogenden molekularen «Tentakeln»

Aufgrund der hohen räumlichen und zeitlichen Auflösung konnten die Forscher zeigen, dass die FG-Nup-Filamente sehr beweglich sind. «Es sind keine steifen Borsten, ganz im Gegenteil, wie dünnste Tentakeln schwingen sie, strecken oder ziehen sich zusammen oder verknäulen sich innerhalb der Pore», sagt Lim. Die Schnelligkeit ihrer Bewegungen entscheidet darüber, welche Moleküle die Pore passieren können.

«Die FG-Nups bewegen sich viel schneller als grosse Proteine und versperren ihnen so den Zugang zum Kernporenkomplex», so Lim. «Kleine Moleküle sind hingegen schneller und können daher die FG-Nup-Barriere überwinden.»

Mit dem Verständnis über die Funktionsweise der Kernporenkomplexe in lebenden Zellen möchte Lim, der Mitglied des Nationalen Forschungsschwerpunkts Molecular Systems Engineering ist, nun herausfinden, wie solche dem Kernporenkomplex nachempfundene selektive Filter den molekularen Verkehr in nicht-biologischen System regulieren könnten.

Originalbeitrag

Yusuke Sakiyama, Adam Mazur, Larisa E. Kapinos and Roderick Y.H. Lim
Spatiotemporal dynamics of the nuclear pore complex transport barrier resolved by high-speed atomic force microscopy
Nature Nanotechnology (2016), doi: 10.1038/nnano.2016.62

Weitere Auskünfte

Prof. Dr. Roderick Lim, Universität Basel, Biozentrum und Swiss Nanoscience Institute, Tel. +41 61 267 20 83, E-Mail: roderick.lim@unibas.ch

Dr. Katrin Bühler, Universität Basel, Kommunikation Biozentrum, Tel. +41 61 267 09 74, E-Mail: katrin.buehler@unibas.ch

Weitere Informationen:

http://www.biozentrum.unibas.ch/de/forschung/gruppen-plattformen/overview/unit/l... - Forschungsgruppe Prof. Roderick Lim
http://dx.doi.org/10.1038/nnano.2016.62 - Abstract

Dr. Katrin Bühler | Universität Basel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegbereiter für Vitamin A in Reis
21.07.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pharmakologie - Im Strom der Bläschen
21.07.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten