Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dem Erreger des Rinderwahnsinns auf der Spur

20.10.2008
Chemikern der ETH Zürich und der TU München gelang es erstmals, ein verankertes Prion künstlich herzustellen. Damit liefern sie der Prionenforschung möglicherweise eine neue Grundlage, um herauszufinden wie BSE oder die Creutzfeldt-Jacob-Krankheit entstehen.

Mitte der 90er Jahre war der Rinderwahnsinn in aller Munde und Medienthema Nummer eins. Das Beunruhigende an der Tierseuche war die Vermutung? dass eine Variante der tödlich verlaufenden Creutzfeldt-Jakob-Krankheit (vCJD) beim Menschen durch den Verzehr von BSE-verseuchtem Rindfleisch hervorgerufen wird.

In beiden Spezies kommt es durch die Krankheiten zur einer Degeneration des Gehirns. Die Forschung geht seit Längerem davon aus, dass dafür falsch gefaltete Prionen verantwortlich sind. Auch wenn es ruhiger um BSE und CJD geworden ist, sind die prionenbedingten Krankheiten bis heute nicht heilbar.

Normale und abnorme Prionen
Normale Prionen sind relativ einfach aufgebaute Proteine, die natürlicherweise im Hirn-gewebe vorkommen. Neue Forschungsergebnisse lassen sogar vermuten, dass Prio-nen eine wichtige Rolle bei der Entwicklung neuer Nervenzellen im Gehirn spielen. In den meisten Fällen weisen also Prionen eine ungefährliche Struktur auf. Noch ist unklar, weshalb diese Proteine plötzlich ihre Struktur ändern und dadurch den Trägerorganis-mus, etwa Kuh, Schaf oder Mensch, krank machen.

Die Forschung verdächtigt einen Teil der Prionen, die Glycosylphosphatidylinositole, kurz GPI genannt. GPI bestehen aus Zucker- und Fettresten und verankern Prionen in der Zelloberfläche. Diese GPI-Verankerung ist möglicherweise dafür verantwortlich, dass ein Prion seine Struktur verändert und sogar weitere Prionen dazu bringt, sich ebenfalls anders zu falten. Resultat sind viele abnorme Prionen, die sich verklumpen und so das Gehirn schädigen.

Erstmals künstlicher Molekülkomplex
Bisher ist es allerdings nicht gelungen, diese komplizierten, verankerten Prionen vollständig aus natürlichen Systemen zu isolieren. Die Forschung musste sich deshalb damit begnügen, die ungewöhnlichen Krankheitserreger ohne Anker zu untersuchen, um ihre Struktur, Funktion, Stabilität und Faltung besser zu verstehen. Das Problem dabei: Einfache Prionen ohne Verankerung machen nicht krank. Es ist für die Prionenforschung deshalb zentral, Prionen mit einem GPI-Anker analysieren zu können.

Eine Lösung bietet nun ein deutsch-schweizerisches Forschungsteam um Peter Seeberger, ETH-Professor für organische Chemie, und Christian Becker, Professor am Labor für Proteinchemie an der TU München an. Ihnen ist es erstmals gelungen, den kompliziert aufgebauten Molekülkomplex im Labor künstlich nachzubauen. Seebergers Gruppe synthetisierte den GPI-Anker, Beckers Gruppe das Prion. Danach wurden die beiden Stoffe zusammengefügt und zu einem Ganzen vervollständigt. "Die Synthese des GPI-Ankers ist für die Chemie ein Meilenstein, weil sie der Forschung neue Mög-lichkeiten und Erkenntnisse öffnet", betont Seeberger.

Kunstprion als Werkzeug
Erste Tests zeigen den Forschern, dass sie das "richtige" Molekül erschaffen haben. Das Kunstprion und sein GPI können sich in Zellmembranen verankern. Mit Hilfe des künstlichen Molekülkomplexes können Prionenforscher die Rolle des GPI-Ankers genauer untersuchen. So kann in Zukunft vielleicht geklärt werden, ob das GPI tatsächlich Einfluss auf die Faltung des Prions hat und ob es dazu beiträgt, dass Prionen sich plötzlich gegenseitig negativ beeinflussen. "Das wird die Arbeit der Prionenforscher um Prof. Adriano Aguzzi vom Unispital Zürich sein, denen wir mit unseren Molekülen nun das entsprechende Werkzeug in die Hand geben", so der ETH-Professor Peter Seeberger.
Literaturhinweis
Becker CFW, Liu X, Olschewski D, Castelli R, Seidel R, Seeberger PH: Semisynthesis of a Glycosylphos-phatidylinositol-Anchored Prion Protein, Angewandte Chemie, Volume 47, Issue 43, Pages 8215-8219; doi:10.1002/anie.200802161

Weitere Informationen

ETH Zürich
Prof. Peter H. Seeberger
Laboratorium für Organische Chemie
Tel: +41 44 633 2103
E-Mail: seeberger@org.chem.ethz.ch
Technische Universität München
Prof. Christian Becker
Department Chemie
Tel.: +49 89 28913343

Franziska Schmid | idw
Weitere Informationen:
http://www.ethz.ch
http://www.ethlife.ethz.ch/archive_articles/081017_kuenstliches_prion/index

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie