Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erleuchtung im Krallenfrosch-Ei

13.04.2010
Wenn Pflanzen sich vor dem Vertrocknen schützen, laufen Prozesse ab, bei denen - ähnlich wie bei der Muskelkontraktion beim Menschen - Kalzium eine wichtige Rolle spielt. Den genauen Ablauf haben jetzt die Würzburger Biophysiker Dietmar Geiger und Rainer Hedrich geklärt.

Pflanzen produzieren während der Photosynthese Zucker. Dabei wird Wasser in Form von Wasserdampf an die Umwelt abgeben. Verantwortlich dafür sind winzige "Ventile" an den Blattoberflächen, die aus paarweise angeordneten Schließzellen bestehen. Je nachdem, ob diese Schließzellen prall gefüllt oder vergleichsweise leer sind, ändern sie ihre Form - ähnlich wie ein Schwimmreifen, der aufgeblasen kreisrund ist, sich aber eng zusammenlegen lässt, wenn man die Luft wieder ablässt.


Über mikroskopisch kleine, regulierbare Poren in ihrer Außenhaut können Pflanzen Kohlendioxid aufnehmen und Wasserdampf abgeben. Die Poren bestehen aus zwei Schließzellen: Wenn diese sich ausdehnen, öffnet sich die Pore. Foto: Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, Uni Würzburg

Schließzellen regeln den Wasseraustausch

Auf die Pflanze bezogen, heißt das: Zwei prall gefüllte Schließzellen bilden einen Kreis und ermöglichen so die Abgabe von Wasserdampf an die Umwelt. Erschlaffen sie, schließt sich das Ventil; die Pflanze behält das Wasser im Inneren und ist so vor dem Austrocknen geschützt. Wie dieser Prozess auf molekularer Ebene abläuft, hat Dr. Dietmar Geiger untersucht. Geiger ist Assistent am Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik von Professor Rainer Hedrich. Über die Ergebnisse seiner Arbeit berichtet die Fachzeitschrift Proceedings of the National Academy of Sciences (PNAS, USA) in ihrer aktuellen Ausgabe.

"Bei Trockenheit bilden Pflanzen ein so genanntes Trockenstresshormon, das die Schließzellpaare über eine Reaktionskette, an der auch Kalzium beteiligt ist, dazu bringt, zu erschlaffen", erklärt Dietmar Geiger. Das "Ventil" schließt sich und verringert so die Wasserabgabe des Blattes. Wie die Biophysiker in vorangegangenen Arbeiten herausfanden, sind an diesem Prozess bestimmte Ionenkanäle und Enzyme beteiligt, die den Prozess feinsteuern. Welche, haben die Wissenschaftler mit einer trickreichen Technik geklärt, die Rainer Hedrich vor gut zehn Jahren etabliert hat, um Ionenkanäle außerhalb von Pflanzenzellen untersuchen zu können. Zentrale Bestandteile dabei sind: Eier des Krallenfroschs und ein gelb fluoreszierendes Protein.

Schwierige Suche nach dem verantwortlichen Enzym

"Aus der vorausgegangenen Arbeit von Dietmar Geiger, die er ebenfalls bei PNAS veröffentlichen konnte, war zu vermuten, dass ein ganz spezieller Anionenkanal an diesem Prozess beteiligt ist", erklärt Rainer Hedrich. Völlig unklar hingegen war, welches Enzym dafür verantwortlich ist, dass sich dieser Kanal für Kalzium-Ionen öffnet. In Frage kamen immerhin 34 Enzyme.

Die - im wahrsten Sinne des Wortes - Erleuchtung brachte ein molekularbiologischer Trick: "Wir haben das Gen für den Schließzell-Anionenkanal an eine Hälfte des Gens für das Gelb-Fluoreszierende-Protein gekoppelt. Die andere Hälfte knüpften wir dann nacheinander an jedes der 34 in Frage kommenden Enzymgene", erklärt Dietmar Geiger.

Leuchtspuren im Krallenfrosch-Ei

Die Idee dahinter: Das Gelb-Fluoreszierende-Protein wird in diesem Fall nur dann aufleuchten, wenn die mit den beiden Hälften verbundenen Proteine des Enzyms beziehungsweise des Anionenkanals in unmittelbare Nähe zueinander geführt werden. Und die Eier des Krallenfroschs kamen ins Spiel, weil sie zum einen durchsichtig genug sind und sich zum anderen als "Reagenzglas für das Beschicken mit Fremdgenen und Übersetzten in aktive Proteine bestens eignen", so Rainer Hedrich.

Tatsächlich gelang es den beiden Wissenschaftlern mit diesem eleganten experimentellen Ansatz, mit dem Ionenkanal als Köder, das dazugehörige Kalzium-abhängige Enzym, eine so genannte Kinase, zu identifizieren. Über den gleichen Ansatz haben die Würzburger "Kanalarbeiter" dann auch noch das Enzym ermittelt, das den Kanal wieder abschaltet - eine Proteinphosphatase.

Unterstützung aus München

Blieben noch die Fragen: Wie nehmen diese beiden Schaltelemente das Trockenstresshormon wahr und welcher Sensor reguliert die Aktivität des Kinase/Phosphatase-Pärchens? Um das herauszufinden, haben sich die Würzburger Forscher mit der Arbeitsgruppe von Professor Erwin Grill von der Technischen Universität München zusammen getan. Die Münchner hatten ein Protein identifiziert, das die Phosphatase inaktiviert, wenn es das Wasserstress-Hormon gebunden hat.

Mit diesem Wissen ließ sich die Signalkette schließen: "In Gegenwart des Stresshormons wird ein Rezeptor stimuliert, der die Phosphatase hemmt. Die Kinase überträgt energiereiches Phosphat auf den Anionenkanal und schaltet ihn somit an. Der Ausstrom von Anionen zieht einen Kalium- und Wasserfluss nach sich, dabei lassen die Schließzellen Druck ab, und die Pflanze überlebt mit fest geschlossenen Stomata die Trockenperiode", so Dietmar Geiger.

Sämtliche Fragen sind damit allerdings nicht geklärt. Jetzt fehle nur noch "ein kleines, aber nicht unwichtiges Detail", so Rainer Hedrich: "Wie kommt das Kalzium-Ion in die Zelle?" Aber auch dafür haben die Würzburger Pflanzenphysiologen schon so eine Idee.

Die Forscher

Dr. Dietmar Geiger hat am Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik promoviert. Danach war er als Postdoktorand am Max-Planck-Institut für Biophysik in Frankfurt. Als Assistent am Lehrstuhl von Professor Rainer Hedrich setzt er molekulare und biophysikalische Methoden ein, um Strukturen von Ionen-Kanälen und Metabolit-Carriern zu verstehen, die die besondere Funktion von Membranproteinen ausmachen.

Professor Rainer Hedrich war Vorreiter der Entdeckung und Entschlüsselung der besonderen Funktion pflanzlicher Ionenkanäle. Er hat bisher alle entscheidenden Ionenkanäle der Schließzelle entschlüsselt - angefangen 1984 neben seiner Doktorarbeit mit der Entdeckung des ersten pflanzlichen Ionenkanals, dem Kaliumkanal der Schließzelle.

"Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities"; Dietmar Geiger, Sönke Scherzer, Patrick Mumm, Irene Marten, Peter Ache, Susanne Matschi, Anja Liese, Christian Wellmann, Khaled A.S. AL-Rasheid, Erwin Grill, Tina Romeis and Rainer Hedrich. Proc Natl Acad Sci USA. doi/10.1073/pnas.0912030107

Kontakt:
Prof. Dr. Rainer Hedrich, T: (0931) 31-86100,
E-Mail: hedrich@botanik.uni-wuerzburg.de
Dr. Dietmar Geiger, T: (0931) 31-86105,
E-Mail: geiger@botanik.uni-wuerzburg.de

Gunnar Bartsch | Uni Würzburg
Weitere Informationen:
http://www.botanik.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Viren ihren Lebenszyklus mit begrenzten Mitteln effektiv sicherstellen
20.02.2017 | Universität zu Lübeck

nachricht Zellstoffwechsel begünstigt Tumorwachstum
20.02.2017 | Veterinärmedizinische Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Im Focus: Sensoren mit Adlerblick

Stuttgarter Forscher stellen extrem leistungsfähiges Linsensystem her

Adleraugen sind extrem scharf und sehen sowohl nach vorne, als auch zur Seite gut – Eigenschaften, die man auch beim autonomen Fahren gerne hätte. Physiker der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Welt der keramischen Werkstoffe - 4. März 2017

20.02.2017 | Veranstaltungen

Schwerstverletzungen verstehen und heilen

20.02.2017 | Veranstaltungen

ANIM in Wien mit 1.330 Teilnehmern gestartet

17.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovative Antikörper für die Tumortherapie

20.02.2017 | Medizin Gesundheit

Multikristalline Siliciumsolarzelle mit 21,9 % Wirkungsgrad – Weltrekord zurück am Fraunhofer ISE

20.02.2017 | Energie und Elektrotechnik

Wie Viren ihren Lebenszyklus mit begrenzten Mitteln effektiv sicherstellen

20.02.2017 | Biowissenschaften Chemie