Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erleuchtung im Krallenfrosch-Ei

13.04.2010
Wenn Pflanzen sich vor dem Vertrocknen schützen, laufen Prozesse ab, bei denen - ähnlich wie bei der Muskelkontraktion beim Menschen - Kalzium eine wichtige Rolle spielt. Den genauen Ablauf haben jetzt die Würzburger Biophysiker Dietmar Geiger und Rainer Hedrich geklärt.

Pflanzen produzieren während der Photosynthese Zucker. Dabei wird Wasser in Form von Wasserdampf an die Umwelt abgeben. Verantwortlich dafür sind winzige "Ventile" an den Blattoberflächen, die aus paarweise angeordneten Schließzellen bestehen. Je nachdem, ob diese Schließzellen prall gefüllt oder vergleichsweise leer sind, ändern sie ihre Form - ähnlich wie ein Schwimmreifen, der aufgeblasen kreisrund ist, sich aber eng zusammenlegen lässt, wenn man die Luft wieder ablässt.


Über mikroskopisch kleine, regulierbare Poren in ihrer Außenhaut können Pflanzen Kohlendioxid aufnehmen und Wasserdampf abgeben. Die Poren bestehen aus zwei Schließzellen: Wenn diese sich ausdehnen, öffnet sich die Pore. Foto: Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, Uni Würzburg

Schließzellen regeln den Wasseraustausch

Auf die Pflanze bezogen, heißt das: Zwei prall gefüllte Schließzellen bilden einen Kreis und ermöglichen so die Abgabe von Wasserdampf an die Umwelt. Erschlaffen sie, schließt sich das Ventil; die Pflanze behält das Wasser im Inneren und ist so vor dem Austrocknen geschützt. Wie dieser Prozess auf molekularer Ebene abläuft, hat Dr. Dietmar Geiger untersucht. Geiger ist Assistent am Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik von Professor Rainer Hedrich. Über die Ergebnisse seiner Arbeit berichtet die Fachzeitschrift Proceedings of the National Academy of Sciences (PNAS, USA) in ihrer aktuellen Ausgabe.

"Bei Trockenheit bilden Pflanzen ein so genanntes Trockenstresshormon, das die Schließzellpaare über eine Reaktionskette, an der auch Kalzium beteiligt ist, dazu bringt, zu erschlaffen", erklärt Dietmar Geiger. Das "Ventil" schließt sich und verringert so die Wasserabgabe des Blattes. Wie die Biophysiker in vorangegangenen Arbeiten herausfanden, sind an diesem Prozess bestimmte Ionenkanäle und Enzyme beteiligt, die den Prozess feinsteuern. Welche, haben die Wissenschaftler mit einer trickreichen Technik geklärt, die Rainer Hedrich vor gut zehn Jahren etabliert hat, um Ionenkanäle außerhalb von Pflanzenzellen untersuchen zu können. Zentrale Bestandteile dabei sind: Eier des Krallenfroschs und ein gelb fluoreszierendes Protein.

Schwierige Suche nach dem verantwortlichen Enzym

"Aus der vorausgegangenen Arbeit von Dietmar Geiger, die er ebenfalls bei PNAS veröffentlichen konnte, war zu vermuten, dass ein ganz spezieller Anionenkanal an diesem Prozess beteiligt ist", erklärt Rainer Hedrich. Völlig unklar hingegen war, welches Enzym dafür verantwortlich ist, dass sich dieser Kanal für Kalzium-Ionen öffnet. In Frage kamen immerhin 34 Enzyme.

Die - im wahrsten Sinne des Wortes - Erleuchtung brachte ein molekularbiologischer Trick: "Wir haben das Gen für den Schließzell-Anionenkanal an eine Hälfte des Gens für das Gelb-Fluoreszierende-Protein gekoppelt. Die andere Hälfte knüpften wir dann nacheinander an jedes der 34 in Frage kommenden Enzymgene", erklärt Dietmar Geiger.

Leuchtspuren im Krallenfrosch-Ei

Die Idee dahinter: Das Gelb-Fluoreszierende-Protein wird in diesem Fall nur dann aufleuchten, wenn die mit den beiden Hälften verbundenen Proteine des Enzyms beziehungsweise des Anionenkanals in unmittelbare Nähe zueinander geführt werden. Und die Eier des Krallenfroschs kamen ins Spiel, weil sie zum einen durchsichtig genug sind und sich zum anderen als "Reagenzglas für das Beschicken mit Fremdgenen und Übersetzten in aktive Proteine bestens eignen", so Rainer Hedrich.

Tatsächlich gelang es den beiden Wissenschaftlern mit diesem eleganten experimentellen Ansatz, mit dem Ionenkanal als Köder, das dazugehörige Kalzium-abhängige Enzym, eine so genannte Kinase, zu identifizieren. Über den gleichen Ansatz haben die Würzburger "Kanalarbeiter" dann auch noch das Enzym ermittelt, das den Kanal wieder abschaltet - eine Proteinphosphatase.

Unterstützung aus München

Blieben noch die Fragen: Wie nehmen diese beiden Schaltelemente das Trockenstresshormon wahr und welcher Sensor reguliert die Aktivität des Kinase/Phosphatase-Pärchens? Um das herauszufinden, haben sich die Würzburger Forscher mit der Arbeitsgruppe von Professor Erwin Grill von der Technischen Universität München zusammen getan. Die Münchner hatten ein Protein identifiziert, das die Phosphatase inaktiviert, wenn es das Wasserstress-Hormon gebunden hat.

Mit diesem Wissen ließ sich die Signalkette schließen: "In Gegenwart des Stresshormons wird ein Rezeptor stimuliert, der die Phosphatase hemmt. Die Kinase überträgt energiereiches Phosphat auf den Anionenkanal und schaltet ihn somit an. Der Ausstrom von Anionen zieht einen Kalium- und Wasserfluss nach sich, dabei lassen die Schließzellen Druck ab, und die Pflanze überlebt mit fest geschlossenen Stomata die Trockenperiode", so Dietmar Geiger.

Sämtliche Fragen sind damit allerdings nicht geklärt. Jetzt fehle nur noch "ein kleines, aber nicht unwichtiges Detail", so Rainer Hedrich: "Wie kommt das Kalzium-Ion in die Zelle?" Aber auch dafür haben die Würzburger Pflanzenphysiologen schon so eine Idee.

Die Forscher

Dr. Dietmar Geiger hat am Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik promoviert. Danach war er als Postdoktorand am Max-Planck-Institut für Biophysik in Frankfurt. Als Assistent am Lehrstuhl von Professor Rainer Hedrich setzt er molekulare und biophysikalische Methoden ein, um Strukturen von Ionen-Kanälen und Metabolit-Carriern zu verstehen, die die besondere Funktion von Membranproteinen ausmachen.

Professor Rainer Hedrich war Vorreiter der Entdeckung und Entschlüsselung der besonderen Funktion pflanzlicher Ionenkanäle. Er hat bisher alle entscheidenden Ionenkanäle der Schließzelle entschlüsselt - angefangen 1984 neben seiner Doktorarbeit mit der Entdeckung des ersten pflanzlichen Ionenkanals, dem Kaliumkanal der Schließzelle.

"Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities"; Dietmar Geiger, Sönke Scherzer, Patrick Mumm, Irene Marten, Peter Ache, Susanne Matschi, Anja Liese, Christian Wellmann, Khaled A.S. AL-Rasheid, Erwin Grill, Tina Romeis and Rainer Hedrich. Proc Natl Acad Sci USA. doi/10.1073/pnas.0912030107

Kontakt:
Prof. Dr. Rainer Hedrich, T: (0931) 31-86100,
E-Mail: hedrich@botanik.uni-wuerzburg.de
Dr. Dietmar Geiger, T: (0931) 31-86105,
E-Mail: geiger@botanik.uni-wuerzburg.de

Gunnar Bartsch | Uni Würzburg
Weitere Informationen:
http://www.botanik.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie