Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erlebter Dürrestress erhöht die Widerstandsfähigkeit gegenüber extremer Dürre

26.08.2014

Können Pflanzen aus Erfahrung lernen? Wirken sich frühere klima- und wetterbedingte Stresserfahrungen darauf aus, wie Pflanzen auf nachfolgende Extremereignisse – beispielsweise eine lange Dürreperiode – reagieren?

Eine neue Langzeitstudie, die ein Forschungsteam um Prof. Dr. Anke Jentsch an der Universität Bayreuth in der Fachzeitschrift „Ecosystems“ vorstellt, spricht für diese Annahme. Wie sich herausgestellt hat, sind Pflanzen gegen extreme Dürre besser gewappnet, wenn sie in den Vorjahren wiederholt Trockenperioden überstanden haben. Dabei wird ihr ‚Stressgedächtnis‘ möglicherweise auch von den Interaktionen mit Pflanzen in ihrer unmittelbaren Nachbarschaft beeinflusst.


Versuchsfläche im Ökologisch-Botanischen Garten der Universität Bayreuth. Auf 85 Versuchsflächen wurden unterschiedliche Vegetationstypen einer extremen Dürre ausgesetzt.

Foto: Prof. Dr. Anke Jentsch, Universität Bayreuth; mit Quellenangabe zur Veröffentlichung frei.

Extreme Dürre auf Freilandflächen mit unterschiedlicher Vorgeschichte

Im Ökologisch-Botanischen Garten der Universität Bayreuth wurde 2005 ein Experiment aufgebaut, das 85 Freiland-Versuchsflächen mit unterschiedlichen Vegetationstypen umfasst. Es handelt sich dabei um Pflanzengemeinschaften, wie sie in Mitteleuropa für Grünland bzw. für Heidelandschaften charakteristisch sind. Zusätzlich wurden Monokulturen mit typischen Grünland-/Heidearten eingerichtet.

Sechs Jahre lang, von Anfang 2005 bis Ende 2010, erlebten alle Pflanzen dieselben natürlichen Trockenzeiten, jedoch wurden sie in unterschiedlicher Weise mit Wasser versorgt. Einige Versuchsflächen erlebten in jedem Jahr eine mehrwöchige, künstlich erzeugte Trockenzeit; andere wurden in jedem Jahr künstlich erzeugten Starkregenfällen ausgesetzt; andere wiederum erhielten – abgesehen von den natürlichen Trockenzeiten – durchgehend eine regelmäßige moderate Bewässerung. Darüber hinaus gab es Kontrollflächen, die allein den natürlichen Wetterverhältnissen ausgesetzt waren.

Von Mai bis August 2011 wurden alle Versuchsflächen einer extremen mehrmonatigen Dürreperiode ausgesetzt. Sie mussten an 104 aufeinander folgenden Tagen ohne Wasser auskommen. Speziell angefertigte durchsichtige Tunnelzelte aus Kunststoff-Folien schirmten die Versuchsflächen von Niederschlägen ab. Das Forschungsteam hatte vor dem Beginn der Dürre sichergestellt, dass die Pflanzen auf allen Flächen eine gleich starke Bewässerung erhielten. Daher waren die Ausgangsbedingungen bezüglich der Wasserversorgung unmittelbar vor der extremen Dürreperiode im Jahre 2011 auf allen Versuchsflächen gleich; nur hatten die Pflanzen unterschiedlich starke Stressbelastungen hinter sich.

Frühere Stresserfahrungen helfen bei der Bewältigung von erneutem Stress

Am Ende der Dürreperiode zeigte sich, dass die Pflanzen in der für Heidelandschaften typischen Vegetation insgesamt weniger stark unter der Trockenheit gelitten hatten als die Pflanzen auf den Grünlandflächen. Weitere Analysen förderten Unterschiede zutage, die offensichtlich mit den mehr oder weniger starken Stressbelastungen in den Vorjahren zusammenhingen.

Diejenigen Pflanzen, die eine regelmäßige Bewässerung gewohnt waren und nur zwei natürliche Dürretage im Zeitraum 2008 bis 2010 erfuhren, kamen mit dem lang anhaltenden Dürrestress am schlechtesten zurecht. Der Anteil des pflanzlichen Gewebes, das verwelkte und abstarb, war bei diesen Pflanzen signifikant höher. Umgekehrt reagierten Pflanzen, die in den drei Vorjahren milde und stärkere Dürreperioden durchgestanden hatten, auf die extreme Dürre mit einer höheren Widerstandsfähigkeit.

Epigenetische Veränderungen? Auf der Suche nach Erklärungen

Wie sind diese Unterschiede zu erklären? „Beim derzeitigen Forschungsstand kommen verschiedene Ursachen infrage“, erklärt Dipl.-Biogeographin Sabrina Backhaus, die auf den Bayreuther Versuchsflächen die extreme Dürreperiode 2011 untersucht, die Reaktionen der Pflanzen ermittelt und die dabei gewonnenen Daten ausgewertet hat.

„Möglicherweise bewirken frühere, durch Trockenheit bedingte Stresserfahrungen, dass sich in den Pflanzen spezifische Proteine ansammeln, die ihnen eine schnelle Reaktion auf den erneuten Stress ermöglichen und somit ein geringeres Absterben von Biomasse bewirken. Besonders spannend ist die weiterreichende Überlegung, ob bei dem ‚Stressgedächtnis‘ der Pflanzen auch epigenetische Veränderungen im Spiel sind, also eine durch die früheren Stresserfahrungen verursachte Modifikation des Erbguts. Dies wurde bereits in anderen Studien entdeckt“, so die Bayreuther Nachwuchswissenschaftlerin.

Interaktionen zwischen unterschiedlichen Pflanzenarten: ein unterschätzter Faktor

Die Ergebnisse der im Jahr 2011 künstlich herbeigeführten extremen Dürre lassen vermuten, dass Pflanzen in der unmittelbaren Nachbarschaft möglicherweise einen Einfluss darauf haben, wie einzelne Pflanzen auf extreme Trockenzeiten reagieren. Heidelbeersträucher, die zusammen mit Besenheide wuchsen, zeigten auf Versuchsflächen, die vor 2011 jährlich künstlich erzeugte Trockenzeiten erlebt haben, ein stärkeres Absterben ihrer Biomasse als auf den Kontrollflächen, die vor 2011 durchweg den natürlichen Wetterverhältnissen ausgesetzt waren.

Der gegenteilige Effekt ließ sich jedoch beobachten, wenn die Heidelbeersträucher unter sich waren, also in einer Monokultur wuchsen. Sie zeigten dann unter extremer Dürre auf Versuchsflächen, die vorher künstlich erzeugte Trockenzeiten überstanden hatten, ein geringeres Absterben der Biomasse als auf den Kontrollflächen. In ähnlicher Weise scheint auch der Spitzwegerich eine unterschiedliche Widerstandsfähigkeit gegenüber extremer Dürre zu entwickeln; je nachdem mit welchen Pflanzen er zusammen wächst.

„Künftige Forschungsarbeiten zum Stressgedächtnis von Pflanzen sollten die Interaktionen zwischen Pflanzen, die verschiedenen Spezies angehören, gründlicher in den Blick nehmen, als dies bisher geschehen ist“, fordert Prof. Jentsch im Hinblick auf die in Bayreuth erzielten Ergebnisse. „Solche Forschungsprojekte sind nicht zuletzt auch deshalb von besonderem Interesse, weil extreme Wetterereignisse – wie beispielsweise lange Dürreperioden – in den kommenden Jahrzehnten voraussichtlich häufiger vorkommen als bisher.“

Veröffentlichung:

Sabrina Backhaus, Juergen Kreyling, Kerstin Grant, Carl Beierkuhnlein, Julia Walter,
and Anke Jentsch,
Recurrent Mild Drought Events Increase Resistance Toward Extreme Drought Stress,
in: Ecosystems, Volume 17, Issue 6, pp 1068-1081 (2014),
DOI: 10.1007/s10021-014-9781-5

Kontakt:

Prof. Dr. Anke Jentsch
Professur für Störungsökologie
Bayreuther Zentrum für Ökologie und Umweltforschung (BayCEER)
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0)921 55 2290
E-Mail: Anke.Jentsch@uni-bayreuth.de (wieder ab 1.9.2014)
und: Sabrina.Backhaus@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nesseltiere steuern Bakterien fern
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Die Immunabwehr gegen Pilzinfektionen ausrichten
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften