Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erlanger „Tissue-Engineering-Therapie“ soll jetzt ausgeweitet werden

24.10.2014

Mikrochirurgie ermöglichte erste Langzeitheilung mit künstlichem Gewebe

„Wir können Patienten jetzt mit der Erlanger Tissue-Engineering-Therapie eine echte und schonende Alternative zu den bisher üblichen Eigengewebeverpflanzungen, z. B. nach Knochenvereiterung, Unfall oder Tumortherapie, anbieten“, sagte Prof. Dr. Dr. h. c. Raymund E. Horch, Direktor der Plastisch- und Handchirurgischen Klinik des Universitätsklinikums Erlangen, heute (24.10.2014) auf einer Pressekonferenz in Erlangen.


Prof. Dr. Dr. h. c. Raymund Horch, Plastisch- und Handchirurgische Klinik des Uni-Klinikums Erlangen, untersucht Patientin Carina fünf Jahre nach der erfolgreichen Tissue-Engineering-Therapie

Foto: Universitätsklinikum Erlangen

Die künstliche Gewebeanzüchtung (Tissue Engineering) im Patienten wurde am Uni-Klinikum Erlangen und der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) in rund zehnjähriger experimenteller Forschung im Labor und in der klinischen Praxis entwickelt und erstmals über mehrere Jahre an zwei Patientinnen erfolgreich erprobt.

„Uns sind weltweit die ersten erfolgreichen Langzeitanwendungen von Methoden des Tissue Engineering zur Knochenwiederherstellung in komplexen Krankheitssituationen gelungen“, sagte Prof. Horch. Zu den ersten beiden Patientinnen, die mit dem neuen Verfahren therapiert wurden, gehört die 24-jährige Studentin Carina aus Würzburg.

Vor rund fünf Jahren bekam sie aufgrund einer Entzündung eine schwere Knochenvereiterung. Die Ärzte entschieden sich, den Entzündungsherd operativ zu entfernen. Zurück blieb ein großer Gewebedefekt. Bislang werden derartige Schäden in den meisten Fällen mithilfe einer Eigengewebeverpflanzung behandelt: Dazu wird Gewebe an einem gesunden Körperabschnitt des Patienten entfernt und an der defekten Stelle wieder eingepflanzt.

Der Nachteil daran: „Dieses Verfahren bringt Sekundärschäden mit sich und führt zur Verformung einer eigentlich gesunden Partie am Körper des Patienten“, erklärte Prof. Horch. Zusätzlich können die Behandelten unter Umständen an der Spenderstelle an Schmerzen oder Bewegungseinschränkungen leiden. Im Fall von Carina beschlossen die Ärzte, ein in solchen Fällen neues Verfahren anzuwenden: das Tissue Engineering.

Diese Methode war ein Jahr zuvor erstmals in Erlangen an einer 33-jährigen Nürnbergerin durchgeführt worden, für die es nach einer schweren Unterschenkelverletzung nach einem Motorradunfall und zahlreichen Operationen in verschiedenen Kliniken praktisch keine andere Heilungsmöglichkeit mehr gegeben hatte. Davor war das Verfahren jahrelang im Labor erfolgreich erprobt worden.

Seit Langem hatten Wissenschaftler weltweit nach einer neuen Methode gesucht, die es ermöglicht, Eigengewebe – wie Knorpel-, Muskel- oder Hautgewebe – heranzuzüchten, um es danach zu implantieren. Einigen Forschern gelangen zwar spektakuläre Erfolge bei der Verpflanzung von künstlichem Gewebe, leider waren diese aber nicht von langer Dauer.

„Das Problem war oft, dass das künstliche Gewebe nicht optimal durchblutet wurde und nach einigen Monaten abstarb“, erläuterte Prof. Horch. „Deshalb haben wir auch über sechs Jahre damit gewartet, bis wir den Erfolg unserer Methode jetzt öffentlich machen.“ Ausführlich vorgestellt wird die Erlanger Tissue-Engineering-Therapie in der Fachzeitschrift „Journal of Cellular and Molecular Medicine“ (Horch RE, Beier JP, Kneser U, Arkudas A. J Cell Mol Med. 2014 May 6).

Jahrelange interdisziplinäre Forschungsarbeiten waren notwendig

Die Erlanger Forschergruppe um Prof. Horch hatte ihr Tissue-Engineering-Verfahren zunächst jahrelang im Labor erforscht. Im Kleintiermodell der Ratte untersuchte das Team anhand einer sogenannten arteriovenösen Gefäßschleife (AV-Loop) die Gefäßneubildung unter anderem in Knochengerüsten. Dabei erwies sich eine selbst entwickelte 8 mm x 10 mm große perforierte Titankammer als äußerst hilfreich für die Gewebezüchtung. Sie war zusammen mit Materialwissenschaftlern der Technischen Fakultät der FAU Erlangen-Nürnberg konstruiert worden.

„Mithilfe der neuartigen Titankammer – in die ein AV-Loop gelegt wurde – konnten wir erstmals zeigen, dass Gefäße, die von außen durch die Poren der Titankammer in das Gewebe einsprießen, Anschluss an die neu gebildeten Gefäße aus dem AV-Loop erhalten und unsere Methode tatsächlich funktioniert“, erläuterte Prof. Horch. Für ihre Pionierleistungen auf dem Weg zur Schaffung von dreidimensional durchbluteten künstlichen Geweben wurden die plastischen Chirurgen um Prof. Horch bereits mehrfach ausgezeichnet, unter anderem erhielt PD Dr. Justus P. Beier aktuell den diesjährigen Wissenschaftspreis der Deutschen Gesellschaft der Plastischen, Rekonstruktiven und Ästhetischen Chirurgen (DGPRÄC).

Interdisziplinäre translationale Forschung hat in Erlangen hohen Stellenwert

Wichtig für den Erlanger Forschungserfolg war nach Ansicht von Prof. Horch die außergewöhnlich gute und effiziente Vernetzung innerhalb der FAU Erlangen-Nürnberg und auch mit anderen Universitäten in Bayern. „Dank der Emerging Fields Initiative der FAU wurde gerade diese besondere interdisziplinäre Vernetzung an den verschiedenen Standorten mit dem Projekt TopBioMat vorangetrieben“, betonte Prof. Horch. So hätten zahlreiche Wissenschaftler der Technischen Fakultät der FAU (Prof. Dr. Aldo R. Boccaccini, Prof. Dr. Ben Fabry, Prof. Dr. Peter Greil, Prof. Dr. Carolin Körner und Prof. Dr. Robert F. Singer) bei der Entwicklung von Kammersystemen und Biomaterialien für die Gewebezüchtung mitgewirkt.

Die in Erlangen traditionell hochwertige Bildgebung bei der Darstellung der Durchblutungsveränderungen wurde gemeinsam mit Prof. Dr. Dr. h. c. mult. Willi A. Kalender (Medizinische Physik) und PD Dr. Andreas Hess (Pharmakologie und Toxikologie) sowie Prof. Dr. Tobias Bäuerle (Radiologisches Institut) anhand spezieller neuer Methoden erarbeitet. Nach Ansicht von Prof. Horch sei die optimale Schnittstelle zwischen Forschung im Labor und Einführung eines Verfahrens in der Klinik (translationale Forschung) eine besondere Stärke des Standortes Erlangen. „Mit der Eröffnung des Translational Research Center (TRC) der Medizinischen Fakultät der FAU Erlangen-Nürnberg und des Universitätsklinikums Erlangen ergeben sich nun weitere spannende Möglichkeiten, um die Forschung mit direktem Nutzen für die Patienten voranzutreiben.“

Ansprechpartner für die Medien:
Prof. Dr. Dr. h. c. Raymund Horch
Tel.: 09131/85-33277
irma.goldberg@uk-erlangen.de

Blandina Mangelkramer | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.fau.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nesseltiere steuern Bakterien fern
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Die Immunabwehr gegen Pilzinfektionen ausrichten
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften