Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erkenntnisse zu Demenz - dem Geheimnis der Kommunikation unserer Gehirnzellen auf der Spur

02.11.2011
Forscher des Queensland Brain Institute (QBI) der University of Queensland, Australien, haben im Rahmen einer Studie bedeutende Einblicke in die komplexen Kommunikationsmechanismen menschlicher Gehirnzellen gewonnen.

Erst kürzlich wurden die Untersuchungsergebnisse in der Wissenschaftszeitschrift „Nature Communications" veröffentlicht. Sie zeigen, dass die Lipide (Fette) der Gehirnzellenmembran die Bewegung kleiner Bläschen, so genannter Vesikel, kontrollieren. Diese Vesikel speichern chemische Botenstoffe, die wiederum als Neurotransmitter bezeichnet werden.

QBI Professor Frederic Meunier leitete die Untersuchungen und erklärte, dass die Ergebnisse auf die experimentelle Verwendung bestimmter Verbindungen zurückzuführen sind, die die Zellmembran beeinträchtigen. „Unsere Untersuchungsergebnisse zeigen, wie kleinste Veränderungen der Lipidzusammensetzung unserer Neuronen eine verheerende Auswirkung auf die Zellkommunikation in unserem Gehirn ausüben können."

„Wir haben herausgefunden, dass das Lipid Phosphatidylinositol (4.5) Bisphosphat für die Mobilisierung und Bewegung sekretorischer Vesikel zur Plasmamembran neurosekretorischer Zellen verantwortlich ist“, teilte er mit.

Wenn Wissenschaftler mehr über den Mechanismus erfahren, der für die Freisetzung von Neurotransmittern verantwortlich ist, wird ihnen dies bei dem andauernden Kampf gegen eine Vielzahl von Krankheiten helfen, die sich auf die neuronale Kommunikation im Gehirn auswirken, so Professor Meunier.

„Es ist bereits bekannt, dass die Demenzentwicklung bei Alzheimerpatienten auf die Veränderungen der Lipidzusammensetzung zurückzuführen ist. Wir hoffen, dass die Entwicklung neuartiger Zusammensetzungen, die auf die Lipidkomposition biologischer Membranen abzielen, die Behandlungsmethoden solcher Gehirnerkrankungen verbessern wird."

Die Studie wurde in Zusammenarbeit mit Wissenschaftlern der biomedizinischen Fakultät der University of Queensland, der Flinders University im australischen Bundesstaat South Australia, dem Centre for Cell Signalling des Institute of Cancer in London, dem Australian Centre for Blood Diseases der Monash University in Melbourne und dem Max Planck Institut für Biochemie durchgeführt.

Weitere Informationen:

Institut Ranke-Heinemann / Australisch-Neuseeländischer Hochschulverbund
Pressestelle
Friedrichstr. 95
10117 Berlin
Email: berlin@ranke-heinemann.de
Tel.: 030-20 96 29 593
oder
Frederic Meunier
Associate Professor, QBI
Tel: 0061 7 3346 6373
Email: f.meunier@uq.edu.au
Das Institut Ranke-Heinemann / Australisch-Neuseeländischer Hochschulverbund ist das gemeinnützige Studierendensekretariat aller australischen und neuseeländischen Universitäten in Europa, zuständig für Wissens- und Forschungstransfer, Forschungsförderung sowie Studenten- und Wissenschaftleraustausch und für die Betreuung von Studierenden und Schülern, die ein Studium Down Under vorbereiten.

Sabine Ranke-Heinemann | idw
Weitere Informationen:
http://www.ranke-heinemann.de/
http://www.ranke-heinemann.tv/
http://www.ranke-heinemann.at/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie