Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erkennen und transportieren: faszinierende Multitasking-Proteine

28.10.2013
Lysosomen sind kleine, eher unscheinbare Strukturen in unseren Zellen. Sie sind von einer Membran umgeben, die besetzt ist mit unterschiedlichen Proteinen.

Die besondere Funktion eines dieser Proteine, LIMP-2, haben Wissenschaftlerinnen und Wissenschaftler vom Biochemischen Institut, Medizinische Fakultät, der Christian-Albrechts-Universität zu Kiel (CAU) zusammen mit Kolleginnen und Kollegen aus Bielefeld und Kanada, jetzt erstmals beschrieben. Die Ergebnisse ihrer Studie erschienen gestern, 27.Oktober, in der renommierten Fachzeitschrift Nature.


Bildunterschrift: Das vereinfachte Modell zeigt, wie Membranproteine das Cholesterin an die Zellmembran transportieren. Foto/Copyright: J. Peters/CAU

Die Biochemikerinnen und Biochemiker konnten mit ihren Experimenten den genauen räumlichen Aufbau des Membranproteins LIMP-2 aufklären. Dieses Ergebnis half ihnen, auch die lang gesuchte Struktur zweier eng verwandter Proteine (SR-B1 und CD36) erstmals zu beschreiben.

„Diese beiden Proteine sind wichtige Rezeptoren an unseren Zellmembranen und von entscheidender Bedeutung für krankmachende Prozesse wie Alzheimer, Demenz, Arterienverkalkung und bei Diabetes“, erklärt Professor Paul Saftig vom Biochemischen Institut der CAU. Man habe zwar geahnt, dass sie bestimmte Fette und insbesondere Cholesterin an die Zellmembranen weiterleiten müssen, wie diese Proteine das tatsächlich vermitteln können, habe man aber nicht gewusst, sagt der Biochemiker.

Die Auflösung der Struktur der Membranproteine ergab nun zwei überraschende Befunde. Zum einen formen diese Proteine einen Tunnel, durch den Cholesterin an die Membran transportiert werden kann. Blockieren Wissenschaftlerinnen und Wissenschaftler den Tunnel, so kann die Zelle kein Cholesterin aufnehmen. Zum anderen verstehen sie nun erstmals, wie diese Rezeptoren andere Proteine, zum Beispiel fettspaltende Enzyme oder mit Fett gefüllte Blutproteine (Lipoproteine), erkennen und binden können.

„Faszinierend ist dabei, dass die Natur es geschafft hat, solche ‚Multitasking‘ Proteine zu entwickeln, die auf der einen Seite fetttragende Proteine binden und zum anderen die Fette dann unmittelbar durch ein Tunnelsystem an die richtige Stelle transportieren können“, erklärt Saftig.

An den mehrjährigen Experimenten waren neben Professor Paul Saftig auch Privatdozent Dr. Michael Schwake, jetzt Universität Bielefeld, sowie die Doktorandinnen Friederike Zunke und Judith Peters vom Biochemischen Institut der CAU beteiligt. Die grundlegenden neuen Erkenntnisse tragen zukünftig zur Entwicklung neuartiger Therapeutika, die zum Beispiel die Cholesterinaufnahme beeinflussen, bei.

Originalpublikation:
Dante Neculai, Michael Schwake, Mani Ravichandran, Friederike Zunke, Richard Collins, Judith Peters, Mirela Neculai, Jonathan Plumb, Peter Loppnau, Juan Carlos Pizarro, Alma Seitova, William S. Trimble, Paul Saftig, Sergio Grinstein, Sirano Dhe-Paganon: Structure of LIMP-2 provides functional insights with implications for SR-BI and CD36, Nature

doi.org/ 10.1038/nature12684

Kontakt:
Prof. Paul Saftig
Telefon: 0431/880-2216
E-Mail: psaftig@biochem.uni-kiel.de

Dr. Boris Pawlowski | idw
Weitere Informationen:
http://www.uni-kiel.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen