Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erhellende Erkenntnisse - Nervenzellen mit Licht an- und ausschalten

16.11.2009
Informationen werden im Gehirn übermittelt, indem ein Neuron durch einen Reiz elektrisch angeregt wird und die Erregung an benachbarte Nervenzellen weiterleitet.

Dieses elektrische Potenzial wird ausgelöst, wenn geladene Ionen durch Kanäle in der Zellmembran geschleust werden. Auch bei der Übermittlung von Sinnesreizen im Auge sind Ionenkanäle von Bedeutung.

Nun haben Wissenschaftler um den LMU-Chemiker Professor Dirk Trauner einen Mechanismus entdeckt, mit dem sie Ionenkanäle in Sinnesrezeptoren mithilfe von Licht gezielt steuern können. Durch die sogenannte Cis-Trans-Isomerisierung gelang es den Forschern, Kaliumkanäle in Nervenzellen des Auges wiederholt an- und auszuschalten.

Dieses Ergebnis - das im Fachmagazin "Angewandte Chemie" als "hot paper" veröffentlicht wurde - könnte die Grundlage für die Entwicklung lichtmodulierter Arzneistoffe sein, etwa für die Therapie bestimmter Formen der Blindheit und von Herzerkrankungen. (Angewandte Chemie International Edition, 16. November 2009).

In der Krebstherapie kommen sogenannte photodynamische Therapien schon seit einiger Zeit zum Einsatz: Dabei reichert sich eine lichtempfindliche Substanz im Tumorgewebe an. Eine Bestrahlung mit Licht aktiviert dann das Medikament, welches das Tumorgewebe gezielt zerstört. Aber auch bei Nerven- und Sinneszellen könnte eine gezielte Regulierung durch Licht medizinische Behandlungsansätze liefern - etwa zur Behandlung bestimmter Augenkrankheiten.

"Die Ionenkanäle in den Nervenzellen des Auges sind wichtig für den Prozess des Sehens", sagt Professor Dirk Trauner vom Department Chemie und Biochemie und vom Exzellenzcluster "Center for Integrated Protein Science Munich" (CIPSM) der LMU. "Nur wenn die Kanäle aktiviert werden, werden die im Auge eintreffenden Informationen an die nächste Nervenzelle und schließlich bis ins Gehirn weitergeleitet."

Eine besonders wichtige Rolle kommt dabei Kanälen zu, die den Durchtritt von Kalium- oder Natriumionen erlauben. Dem Team um Trauner gelang bereits letztes Jahr der Nachweis, dass ein Molekül aus der chemischen Gruppe der Azobenzene, das sogenannte AAQ, die Kaliumkanäle von Nervenzellen empfindlich auf Lichtreize reagieren lässt. Nun konnte der Biochemiker in Zusammenarbeit mit Forschern der University of California in Berkeley, USA, den Wirkmechanismus der Lichtsensitivität aufklären. "Entscheidend ist dabei, dass das AAQ-Molekül in zwei verschiedenen räumlichen Formen vorliegen kann", so Trauner.

"Wir konnten nun beobachten, dass AAQ in die Neuronen eindringt und am Kaliumkanal dort bindet, wo die Ionen im Normalfall vorbeifließen." In der Trans-Konfiguration blockiert das Molekül dann den Ionenkanal, während es in der Cis-Konfiguration den Kanal öffnet - und so den Kaliumionen den Durchtritt erlaubt.

Bemerkenswert ist zudem, dass AAQ auch an natürlich vorkommende Ionenkanäle bindet, während alle bisher verwendeten lichtsensitiven Moleküle nur an genetisch veränderte Moleküle andocken können. Auch die Konfiguration des Moleküls lässt sich regulieren: Die Cis-Form nimmt AAQ bevorzugt bei langwelligem Ultraviolettlicht an, während es bei grünem Licht in die Trans-Form übergeht. Damit ließen sich in Zukunft möglicherweise auch Arzneistoffe entwickeln, die sich durch Licht einer bestimmten Wellenlänge aktivieren lassen. Derart lichtempfindliche Arzneistoffe könnten etwa dazu beitragen, bestimmte Formen der Blindheit wie die Makuladegeneration zu behandeln. "Bei diesem häufigen Leiden sterben die lichtsensitiven Zellen der Netzhaut ab, während die nachgeschalteten Neuronen noch funktionsfähig sind. "Denkbar ist, diese retinalen Ganglienzellen durch lichtsensitive Substanzen anzuregen - und so die Sehfähigkeit wiederherzustellen", meint Trauner. "Aber das ist im Moment natürlich noch Zukunftsmusik."

Bislang konnten die Forscher nur das Prinzip aufklären, das möglicherweise aber auch andere Anwendungsfelder in der Medizin eröffnet. Denn auch Kalzium- und Natriumkanäle ähneln den Kaliumkanälen in der Struktur und Funktion. Sollten sie diese Übereinstimmungen für vergleichbare Anwendungen zugänglich machen, könnte dies bei der Behandlung von Herzerkrankungen von Nutzen sein - wenn lichtsensitive Moleküle gezielt Kalziumkanäle der Herzmuskelzellen öffnen und schließen. Doch jede dieser potenziellen therapeutischen Anwendungen lässt sich nur realisieren, wenn die fraglichen Moleküle sehr selektiv wirken: Die lichtempfindlichen Substanzen dürfen nur an bestimmte Ionenkanäle in bestimmten Zelltypen binden. Trauner und sein Team wollen diese selektive Wirksamkeit nun in weiteren Studien untersuchen. (CA/suwe)

Publikation:
"Photochromic blockers of voltage-gated potassium channels";
Matthew R. Banghart, Alexandre Mourot, Doris L. Fortin, Jennifer Z. Yao, Richard H. Kramer, Dirk Trauner;
Angewandte Chemie International Edition, Vol. 48, Issue 48, S. 9001-9101,
16 November 2009
DOI: 10.1002/anie.200904504
Ansprechpartner:
Professor Dirk Trauner
Department Chemie und Biochemie und Exzellenzcluster "Center for Integrated Protein Science Munich" (CIPSM) der LMU München
Tel: +49-89-2180-77800
Fax: +49-89 2180-77972
E-Mail: dirk.trauner@cup.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.cup.uni-muenchen.de/oc/trauner

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Diabetesforschung: Neuer Mechanismus zur Regulation des Insulin-Stoffwechsels gefunden
06.12.2016 | Universität Osnabrück

nachricht Was nach der Befruchtung im Zellkern passiert
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weiterbildung zu statistischen Methoden in der Versuchsplanung und -auswertung

06.12.2016 | Seminare Workshops

Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen

06.12.2016 | Förderungen Preise

Innovationen für eine nachhaltige Forstwirtschaft

06.12.2016 | Agrar- Forstwissenschaften