Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Erfolgsrezept natürlicher Sonnenkollektoren

28.09.2011
Physiologen der Universität Jena ergründen, wie Pflanzen das Licht zur Fotosynthese optimal nutzen

Das Prinzip der Fotosynthese lernt heute bereits jedes Schulkind: Grüne Pflanzen nutzen die Energie des Sonnenlichts, um Kohlendioxid in Zucker zu verwandeln. Gleichzeitig entsteht dabei Sauerstoff. Doch was als allgemein gesichert in den Lehrbüchern steht, wirft für die Wissenschaft noch viele Fragen auf.

„Wir verstehen noch nicht einmal ansatzweise, wie es den Pflanzen überhaupt möglich ist, so effizient Fotosynthese zu betreiben“, sagt PD Dr. Thomas Pfannschmidt von der Friedrich-Schiller-Universität Jena. Denn: Für die meisten Pflanzen sind die Lichtverhältnisse in der Regel keineswegs optimal. „Jeder, der schon einmal im Spätsommer durch ein Maisfeld gegangen ist, weiß, zwischen den einzelnen Pflanzen ist es dunkel“, so der Pflanzenphysiologe Pfannschmidt.

„Das wenige Licht, das bei den unteren Blättern der Maispflanzen noch ankommt, ist zur Fotosynthese völlig ungeeignet.“ Dennoch sterben diese Blätter nicht ab und die Pflanze wächst und gedeiht weiter. Wie das möglich ist, das hat Pfannschmidts Team vom Jenaer Uni-Institut für Allgemeine Botanik und Pflanzenphysiologie jetzt genauer untersucht und seine Forschungsergebnisse in der aktuellen Ausgabe der renommierten Fachzeitschrift „The Plant Cell“ veröffentlicht (DOI: 10.1105/tpc.111.087049).

„Der Trick der Pflanzen besteht darin, dass sie ihren Fotosyntheseapparat permanent den gerade vorherrschenden Lichtverhältnissen anpassen“, nennt Dr. Pfannschmidt die zentrale Erkenntnis der aktuellen Studie. „Und das passiert innerhalb weniger Minuten.“ Die Forscher haben diese Anpassung an einer Modellpflanze, der Ackerschmalwand (Arabidopsis thaliana), untersucht. Wie sie auf elektronenmikroskopischen Aufnahmen sehen konnten, liegen die komplexen Enzymsysteme, die für die Fotosynthese verantwortlich sind, je nach Intensität und Wellenlänge der einfallenden Strahlung in unterschiedlicher räumlicher Anordnung vor. „Dadurch sorgt die Pflanze dafür, dass das Licht optimal genutzt wird“, so Pfannschmidt.

Der Umbau in der dreidimensionalen Struktur der Chloroplasten – so werden die Zellorganellen genannt, in denen die Fotosynthese abläuft – umfasst zwei Prozesse, wie die Jenaer Physiologen herausgefunden haben. Zum einen ordnen sich die Membranen, in denen die Enzymsysteme verankert sind, entweder in dicht gepackten Stapeln oder eher langgestreckten Kavernen an. Zum anderen werden die einzelnen Grundbausteine des Fotosyntheseapparates zu „Superkomplexen“ zusammengeschaltet, was die Effizienz der Fotosynthese unter ungünstigen Lichtverhältnissen erhöht. In ihrer aktuellen Veröffentlichung konnten die Forscher zeigen, dass diese beiden Anpassungsmechanismen ursächlich miteinander zusammenhängen. Zudem konnten sie ein neuartiges Eiweißmolekül identifizieren, das die Fotosysteme verknüpft und so die Formierung der „Superkomplexe“ reguliert.

„Diese hochflexible, dynamische Anpassung der pflanzlichen ,Sonnenkollektoren‘ an die jeweilige Lichteinstrahlung ist letztlich das Geheimnis ihrer enormen Effizienz“, resümiert Dr. Pfannschmidt. Wie diese Anpassung auf molekularer Ebene reguliert wird, das wollen die Wissenschaftler von der Uni Jena nun intensiv erforschen. Diese Erkenntnisse, so Pfannschmidt, seien zwar erst einmal reine Grundlagenforschung. „Langfristig ist es aber auch vorstellbar, gezielt Nutzpflanzen zu züchten, deren Fotosyntheseapparat an die Lichtverhältnisse heutiger Agrarbedingungen besser angepasst ist, um so höhere Erträge zu erzielen.“

Original-Publikation:
Dietzel L, Bräutigam K, Steiner S, Schüffler K, Lepetit B, Grimm B, Schöttler MA, Pfannschmidt T. Photosystem II Supercomplex Remodeling Serves as an Entry Mechanism for State Transitions in Arabidopsis. Plant Cell. 2011, DOI: 10.1105/tpc.111.087049
Kontakt:
PD Dr. Thomas Pfannschmidt
Institut für Allgemeine Botanik und Pflanzenphysiologie der Friedrich-Schiller-Universität Jena
Dornburger Straße 159, 07743 Jena
Tel.: 03641 / 949236
E-Mail: thomas.pfannschmidt[at]uni-jena.de

Dr. Ute Schönfelder | idw
Weitere Informationen:
http://www.uni-jena.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Adenoviren binden gezielt an Strukturen auf Tumorzellen
23.04.2018 | Eberhard Karls Universität Tübingen

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Moleküle brillant beleuchtet

23.04.2018 | Physik Astronomie

Sauber und effizient - Fraunhofer ISE präsentiert Wasserstofftechnologien auf Hannover Messe

23.04.2018 | HANNOVER MESSE

Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen

23.04.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics