Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erfolge mit Herzgewebe aus dem Labor

03.11.2016

Im Labor gezüchtete Herzmuskelstreifen wachsen auf kranken Herzen von Meerschweinchen an und verbessern die Herzfunktion. Das fand ein Team von Forschern aus Deutschland, Norwegen, Schottland und den USA heraus und berichtet darüber in der aktuellen Ausgabe von Science Translational Medicine.

Zebrafische und einige Amphibienarten können es, Säugetiere und der Mensch können es nicht: abgestorbene Herzmuskelzellen durch neue ersetzen. Nach einem Infarkt bleibt beim Menschen eine Narbe im Herzmuskel zurück, wodurch sich die Herzleistung meist dauerhaft verschlechtert.


Im Labor gezüchtetes Herzmuskelgewebe wird wie ein Flicken auf das kranke Herz genäht.

Foto: DZHK/Weinberger

Kardiologen träumen deshalb davon, das abgestorbene Gewebe durch künstliches zu ersetzen. Ein Forscherteam um Prof. Thomas Eschenhagen vom Deutschen Zentrum für Herz-Kreislauf-Forschung (DZHK) und vom Universitätsklinikum Hamburg-Eppendorf konnte nun einen beachtlichen Erfolg auf diesem hart umkämpften Forschungsgebiet erzielen.

Es gelang den Forschern, im Labor gezüchtetes menschliches Herzgewebe auf kranke Herzen von Meerschweinchen zu transplantieren. Meerschweinchen verwendeten sie, weil deren Herzen von allen Kleintierherzen dem menschlichen am nächsten kommen. Das Gewebe wuchs an und die Herzleistung der Tiere verbesserte sich um bis zu 30 Prozent.

Umprogrammierte Körperzellen werden zu Herzzellen

Einer der Erstautoren der Studie, Dr. Florian Weinberger (weitere Erstautoren: Dr. Kaja Breckwoldt, Dr. Simon Pecha), erläutert, was die Arbeiten der Gruppe von anderen Ansätzen unterscheidet: „Wir verwenden induzierte pluripotente Stammzellen, das sind umprogrammierte menschliche Körperzellen, aus denen jede Art von Gewerbe gezüchtet werden kann. Im Gegensatz dazu arbeiten Gruppen außerhalb von Europa häufig mit embryonalen Stammzellen. In Europa dürfen diese Zellen jedoch nicht zur Transplantation am Menschen eingesetzt werden.“

Und noch einen entscheidenden Unterschied gibt es: Die Forscher haben aus den Herzzellen im Labor dreidimensionale Streifen gezüchtet, die wie ein Flicken auf das Herz genäht werden. Andere Gruppen hingegen spritzen Zellsuspensionen direkt in den Herzmuskel. Die Vor- und Nachteile der beiden Ansätze beschreibt Weinberger so: „Der Großteil der gespritzten Zellen wird aus dem Herzen wieder ausgewaschen bzw. überlebt die Injektion nicht. Das ist ineffizient und kann auch gefährlich sein, wenn nämlich einzelne Zellen noch nicht zu Herzmuskelzellen ausgereift, also noch pluripotent sind. Sie könnten in den Körper gelangen und Tumoren bilden.“

Dafür lasse sich die Methode aber sehr einfach per Katheter durchführen. Der Vorteil von dreidimensionalem Gewebe wie in der vorliegenden Studie sei, dass man viel weniger von den sehr teuren Zellen bräuchte. Und dass sie ausgewaschen werden, komme vermutlich seltener vor, so der Mediziner.

Die Wissenschaftler machten auch Kontrollversuche mit anderen Gewebestreifen, wofür sie Endothelzellen verwendeten. Damit wollten sie ausschließen, dass bereits die Stabilisierung des Herzmuskels durch beliebiges Gewebe zur Erhöhung der Leistung führte. Das war jedoch nicht der Fall, die Herzleistung dieser Tiere verbesserte sich nicht. Damit keine subjektiven Einschätzungen in die Ergebnisse einfließen konnten, führten die Forscher die Versuche verblindet durch, das heißt, sie wussten selbst nicht, welche Tiere das Herzgewebe und welche anderes Gewebe bekommen hatten.

Original- und Ersatzzellen schlagen (meist) im Takt

Die zuckenden Streifen aus dem Labor haben ihren eigenen Rhythmus und nur wenn sie am Ende mit dem Originalherz im Takt schlagen, erreichen sie die volle Leistungsfähigkeit. Wichtig für die Eignung des Ersatzgewebes ist daher die sogenannte elektrophysiologische Kopplung. „Um diese zu erreichen haben wir das Gewebe ober- und unterhalb der Narbe auf gesundes Gewebe genäht“, sagt Weinberger. Diese Kopplung konnten die Forscher bei einigen Tieren beobachten. Ob sie auch bei den anderen Tieren erfolgt war und vielleicht nur von ihrer Messmethode nicht erfasst werden konnte, wissen sie noch nicht.

Die nächsten Schritte bis zur Anwendung am Menschen

Um die Methode einmal beim Menschen anwenden zu können, sind noch einige Schritte nötig. Aus Sicherheitsgründen müssen die Forscher genau untersuchen, ob und wie viele Zellen ausgewaschen werden. Außerdem wollen sie Dosisuntersuchungen machen, um herauszufinden, ob sie für den gleichen Effekt vielleicht die Menge an Zellen reduzieren können. Auch der Zeitpunkt der Therapie kann eine Rolle spielen. „Wir wissen noch nicht, ob es Unterschiede gibt, wenn das Gewebe kurz nach der Schädigung transplantiert wird oder wenn der Schaden im Herzen schon chronisch ist“, so Weinberger. Und schließlich müssten die Versuche bei größeren Tieren wie Schweinen wiederholt werden, deren Herz-Kreislauf-System dem von Menschen noch viel ähnlicher sei. Für diese Schritte hin zur klinischen Anwendung, die man auch Translation nennt, stellt das DZHK noch einmal eine größere Summe an Forschungsgeldern bereit.

Originalarbeit:
Cardiac repair in guinea pigs with human engineered heart tissue from induced pluripotent stem cells. Florian Weinberger et. al., Sci. Transl. Med. 8, 363ra148 (2016)
http://stm.sciencemag.org/lookup/doi/10.1126/scitranslmed.aaf8781.

Kontakt:
Dr. med. Florian Weinberger, Universitätsklinikum Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, f.weinberger@uke.de
Christine Vollgraf, Presse- und Öffentlichkeitsarbeit, Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Tel.: 030 3465 529 02, christine.vollgraf@dzhk.de

Weitere Informationen:

https://dzhk.de/

Christine Vollgraf | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht In Hochleistungs-Mais sind mehr Gene aktiv
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Warum es für Pflanzen gut sein kann auf Sex zu verzichten
19.01.2018 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie