Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erbsubstanz-Moleküle werden auf Bio-Chip wie in der Natur zusammengepackt

09.08.2016

Normalerweise stoßen sich einzelne Moleküle des Erbmaterials gegenseitig ab. Ist jedoch wenig Platz, müssen die DNA-Moleküle dichter gepackt werden. In Spermien, im Zellkern und in der Protein-Hülle eines Virus ist dies der Fall. Einem internationalen Physiker-Team ist es nun gelungen, diese sogenannte DNA-Kondensation auf einem Bio-Chip künstlich nachzuempfinden.

Wichtige biologische Abläufe in Zellen nachzubilden und so besser verstehen zu können, ist aktuell ein zentrales Forschungsthema. Nun haben es Physiker der TU München und des Weizmann-Instituts in Rehovot erstmals geschafft, die sogenannte DNA-Kondensation auf einem Bio-Chip kontrolliert ablaufen zu lassen. Dabei handelt es sich um einen Prozess, der überall dort eine Rolle spielt, wo DNA-Moleküle sehr dicht gepackt im Körper vorkommen, etwa weil sie durch räumliche Gegebenheiten auf ein kleines Volumen begrenzt sind.


Labyrinth aus kondensierten DNA-Molekülen

Bild: G. Pardatscher / TUM

Im Zellkern ist das genauso der Fall wie in der Protein-Hülle eines Virus oder im Kopf eines Spermiums. Das Phänomen ist auch physikalisch interessant, weil es eine Art Phasenübergang darstellt. Die DNA-Doppelstränge, die sich normalerweise aufgrund ihrer negativen Ladung gegenseitig abstoßen, sind dann ganz eng zusammengepackt. „Im verdichteten Zustand sind sie beinahe kristallin angeordnet“, sagt Co-Autor und TU-Professor Friedrich Simmel.

Nano-Haare

Dem internationalen Team um Simmel und seinen israelischen Kollegen Roy Bar-Ziv gelang es, Tausendstel Millimeter, also mehrere tausend Basenpaare lange DNA-Moleküle möglichst dicht an verschieden breite Nano-Strukturen auf einem Chip zu binden. Dies sieht ein bisschen so aus, als hätten die Forscher winzige Härchen auf die Chipoberfläche transplantiert.

Aufgrund ihrer negativen Ladung stießen sich die DNA-Moleküle zunächst ab, was wirkte, als würden einem die Nano-Härchen zu Berge stehen. Gaben die Forscher nun ein Mittel namens Spermidin hinzu, dessen Moleküle mehrfach positiv geladen sind, startete der Kondensationsvorgang. Die zuvor eher aufrecht stehenden DNA-Fäden fielen in sich zusammen, einer nach dem anderen sank zielgerichtet entlang der dünnen Strukturen auf den nächsten.

Das ist wie eine Domino-Kaskade im Nanoformat. Das Resultat waren dicht übereinander liegende DNA-Moleküle, so eng gepackt, wie sie eben auch in Zellkernen vorkommen. Alle DNA-Moleküle lagen entlang der vorgegebenen Pfade. „Das ist ein ganz dramatischer Vorgang“, sagt Simmel. „Die DNA wird schlagartig in eine Richtung gebündelt.“

Kondensation und Dekondensation, also das erneute Entpacken der DNA-Stränge, spielen beispielsweise bei der Genexpression eine wichtige Rolle. Sind die DNA-Moleküle dicht gepackt, lässt sich beispielsweise die in ihnen gespeicherte Information nicht auslesen.

Neue Erkenntnisse mit dem DNA-Chip

Die Forscher haben so einen weiteren Baustein, um auf Chip-Oberflächen gezielt künstliche Zellen herstellen und mit all ihren Phänomenen studieren zu können. „Es ist denkbar, Zell-ähnliche Systeme mit dicht gepackter DNA auf einem Chip zu realisieren“, sagt Simmel. Die DNA-Kondensation könnte dann dazu dienen, die Gen-Expression und das Kopieren von Gen-Informationen in so einer künstlichen Zelle besser steuern zu können.

Prinzipiell ist es auch möglich, die dicht gepackten DNA-Moleküle dazu zu nutzen, auf solchen Biochips gezielt Signale und Informationen über eine Art Leiterbahn weiterzugeben und zu verteilen. Kondensation und Dekondensation ließen sich dabei wie ein An-/Aus-Schalter nutzen und zeitlich gut steuern.

Friedrich Simmel wäre kein leidenschaftlicher Grundlagenforscher, würde er nicht neben technischen Anwendungsperspektiven gleichzeitig die Grundlagenphysik im Auge behalten. „Wir wollen auch die Bedingungen des Phasenübergangs bei der Kondensation verstehen“, sagt Simmel. „Dafür haben wir auf dem Chip ideale Bedingungen. Wir können exakt kontrollieren, wo er stattfindet und wie schnell er passiert.“

Das sei so ähnlich wie bei einem unterkühlten Wasser oder Bier im Eisfach, wo die Flüssigkeit auch von einem Kristallisationskeim ausgehend ab einem bestimmten Punkt schlagartig kristallisiere und das Eis wachse. Nur steuert hier nicht die Temperatur den Phasenübergang, sondern die Konzentration der positiv geladenen Moleküle.

Die Arbeiten wurden unterstützt durch Mittel der Volkswagen Stiftung, der Deutschen Forschungsgemeinschaft über den Exzellenzcluster Nanosystems Initiative Munich (NIM), der Israel Science Foundation und der Minerva 80 Foundation.

Publikation:
G. Pardatscher, D. Bracha, O. Vonshak, S. S. Daube, F. C. Simmel, R. H. Bar-Ziv, „DNA condensation in one dimension“, Nature Nanotechnology (2016), DOI: 10.1038/nnano.2016.142

Kontakt:
Prof. Dr. Friedrich C. Simmel
Physik-Department und ZNN/WSI
Am Coulombwall 4a
85748 Garching, Deutschland
Tel: +49 89 289 11610
E-Mail: simmel@tum.de
Web: http://www.e14.ph.tum.de/

Weitere Informationen:

http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2016.142.html Link zur Publikation
http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/33314/ Link zur Pressemitteilung

Dr. Ulrich Marsch | Technische Universität München

Weitere Berichte zu: Bio-Chip Chip Coulombwall DNA-Chip DNA-Moleküle DNA-Stränge Genexpression Moleküle dna

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften