Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Erbgut des Erregers der Kraut- und Knollenfäule entschlüsselt

17.09.2009
Forschung für gezielten Pestizideinsatz und neue Züchtungen / Universität Hohenheim an internationalem Genomanalyse-Projekt beteiligt (Nature, Ausgabe vom 17. September 2009)

Der Erreger der Kraut- und Kartoffelfäule, Phytophthora infestans, ist weltweit der zerstörerischste Schädling im Kartoffelanbau. Im Rahmen eines internationalen Forschungsvorhabens hat ein Wissenschaftler der Universität Hohenheim jetzt dabei geholfen das Erbgut des heimtückischen Erregers zu analysieren.

Der Pilz, so die Forschungsergebnisse, kann bis zu 700 verschiedene Proteine in die Pflanzenzelle einschleusen und damit die Pflanze ausbeuten und letztlich zerstören. Details über Erbgut und Wirkungsmechanismen des Erregers veröffentlichten Forscher aus 35 Forschungsinstitutionen aus sechs verschiedenen Ländern, unter anderem von der Universität Hohenheim, in der aktuellen Ausgabe der Zeitschrift Nature.

Er war verantwortlich für die große Hungersnot in Irland in den 1840er Jahren und ist doch noch lange nicht Geschichte. Heute noch rafft der Erreger Phytophthora infestans in weniger als zwei Wochen unzählige Quadratkilometer Kartoffelfelder weltweit dahin. Die Bekämpfung der Kartoffelkrankheit ist aufwändig und teuer und die erfolgreich behandelten Kartoffeln lassen sich nicht mehr als Bioprodukte vermarkten. Allein im laufenden Jahr wird der wirtschaftliche Schaden durch die Kartoffelkrankheit auf 6,7 Milliarden Dollar geschätzt.

Das gesamte Erbgut des Erregers der Kraut- und Knollenfäule besteht aus 240 Megabasen, das sind 240 Millionen genetische Informationsträger. Damit ist das Genom des Erregers größer, als das der meisten Pflanzen, deren Genom bisher vollständig entschlüsselt wurde.

Erreger ist höchst anpassungsfähig

Hauptsächlich zwei Gründe machen die Bekämpfung von Phytophthora infestans so schwierig, meint Privatdozent Dr. Marco Thines, Co-Autor des Artikels: "Der Erreger passt sich sehr schnell an neue Kartoffelsorten an und entwickelt Resistenzen gegenüber Pestiziden, mit denen man ihn bekämpfen könnte."

Die Forschungsergebnisse der Expertengruppe liefern die Erklärung für die hohe Anpassungsfähigkeit des Erregers. "Der Erreger schleust kleine Proteine in die Pflanzenzelle ein. Diese programmieren Teile des Stoffwechsels um und beeinflussen die Informationsverarbeitung in der befallenen Pflanze. Dadurch wird unter anderem die Erkennung des Erregers verhindert, " erklärt Marco Thines. Wie ein Parasit lebt der Erreger dann in der Pflanze weiter und entzieht ihr lebenswichtige Energie.

Dass es insgesamt 700 verschiedene Proteine gibt, die der Erreger potentiell einschmuggeln kann, konnten die Forscher nun aufdecken. Diese Vielfalt macht die Interaktion zwischen Wirt und Pathogen jedoch auch zu einem äußerst komplexen System. Das internationale Forscherteam wird nun die Gene dieser 700 sogenannten Effektoren analysieren, um die Interaktionen jedes einzelnen mit der Pflanzenzelle verstehen zu können. "Durch die Genom-Sequenzierung haben wir nun ein Wissen in der Hand, mit dem wir hoffen herausfinden zu können, an welcher Stelle der Pilz in den Pflanzenstoffwechsel eingreift, um dann gezielt Methoden zu entwickeln, um die Infektion mit dem Pathogen zu verhindern", fasst Dr. Thines zusammen.

Gezielte Bekämpfung des Erregers wird möglich

Durch die Genomsequenzierung wird die Basis gelegt, um die Interaktion zwischen Wirt und Pathogen besser verstehen zu können. Dies wird letztlich dazu führen, dass gezieltere Bekämpfungsstrategien ermöglicht werden. Ein Beispiel dafür sind maßgeschneiderte Fungizide, die das Pathogen an der Besiedlung des Wirtes hindern können. Darüber hinaus werden auch in der Pflanzenzüchtung die neuen Erkenntnisse von großer Bedeutung sein. "Es kann nun mit molekularbiologischen Techniken in Arten, die nah mit der Kartoffel verwandt sind, nach Resistenzfaktoren gefahndet werden, welche die Effektoren des Pathogens erkennen und eine Abwehrreaktion gegenüber dem Schaderreger auslösen können", meint Marco Thines. Diese Resistenzfaktoren könnten dann, zum Beispiel durch Einkreuzung und Züchtung, in Kartoffeln eingebracht werden, um eine nachhaltige Resistenz zu schaffen. "Dies würde letztlich zu einer weltweit verbesserten Ernährungssituation führen und den Einsatz von Pestiziden verringern, was nicht nur die Kartoffelproduktion günstiger machen, sondern auch die Umwelt entlasten würde", so die Vision von Marco Thines.

Hintergrund

Bei der Genom-Sequenzierung wird das Erbgut des Erregers in kleine Teile gespalten, diese werden in ein Bakterium eingebracht und vermehrt. So werden Kolonien mit gleichen Fragmenten des Erbguts erhalten. Nach einer Extraktion kann molekularbiologisch die Gensequenz ermittelt werden. So konnte die komplette Genom-Sequenz des Pilzes entschlüsselt werden.

Die Aufgabe von Marco Thines im Forschungsverbund war es, an der Analyse einer der zwei großen Proteinklassen, die an der Interaktion beteiligt sind, mitzuarbeiten.

Ansprechperson:
Priv. Doz. Dr. rer. nat. Marco Thines, Fachgebiet Biodiversität und pflanzliche Interaktion

Tel.: 0711/459-24322, E-Mail: thines@uni-hohenheim.de

Text: Konstantinidis / Fehrle

Florian Klebs | idw
Weitere Informationen:
http://www.uni-hohenheim.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität
25.04.2017 | Universität Bielefeld

nachricht Wehrhaft gegen aggressiven Sauerstoff - Metalloxid-Nickelschaum-Elektroden in der Wasseraufspaltung
25.04.2017 | Universität Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen