Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Epigenetik: Die Gene sind nicht alleine schuld

09.04.2009
Wie mächtig ist das Erbe unserer Gene? Das mögen sich vor allem Menschen fragen, die eine genetische Prädisposition für bestimmte Krankheiten wie Herz-Kreislauf- oder Stoffwechselerkrankungen haben. Bis vor wenigen Jahren hätten selbst gewiefte Genetiker noch keine Antwort auf diese Fragen geben können.

Doch mit dem Fortschreiten der Molekularbiologie hat sich der Wissenschaftszweig der Epigenetik enorm weiter entwickelt. Wie und warum auch unsere Lebensweise und Umwelt darüber entscheiden, ob Gene aktiv werden oder nicht, erläutert die Humangenetikerin Prof. Anna Starzinski-Powitz in der aktuelle Ausgabe von "Forschung Frankfurt".

Epigenetische Studien belegen inzwischen klar, dass von der Umwelt verursachte Veränderungen des Phänotyps, also das aus den Genen hervorgegangene Erscheinungsbild des Menschen, uns das ganze Leben prägen können. Mehr noch: diese Veränderungen können an nachfolgende Generationen weitergegeben werden. Umwelteinflüsse fördern oder verstärken nach unserem heutigen Verständnis Krankheiten wie Diabetes, Krebs, Fettsucht, aber auch natürliche Vorgänge wie die Embryonalentwicklung und Regenerationsprozesse.

Damit Gene ihre Merkmale ausprägen können, müssen sie aktiv, also angeschaltet sein. Geschieht dies zur falschen Zeit, können Entwicklungsstörungen oder Krankheiten die Folge sein. Um das zu verhindern, gibt es molekulare Schalter, die in jeder Zelle ein typisches Muster aktiver und inaktiver Gene aufrechterhalten. Die globalen (genomweiten) epigenetischen Muster, die zwangsläufig zwischen verschiedenen Zelltypen variieren und sie unterscheiden, nennt man Epigenom.

Die Studien vieler Wissenschaftler haben zu der heute einhellig akzeptierten Vorstellung geführt, dass eine chemische Modifikation der DNA mit Methylgruppen, insbesondere in den Steuerregionen von Genen, zum Abschalten von Genen wichtig ist. Einen weiteren epigenetischer Mechanismus stellen Modifikationen von Histonen dar, die für die Verpackung der DNA essentiell sind. Sie werden durch Acetyl- oder Methylgruppen modifiziert. Dabei entsteht eine Art Code, ähnlich dem Strichcode im Warenverkauf, wodurch der Zugang von Proteinen der Transkriptionsmaschinerie an die Steuerregionen der Gene und damit deren Aktivität reguliert werden kann.

Für die biomedizinische Forschung sind solche Mechanismen von großer Bedeutung. So weiß man inzwischen, dass beispielsweise Krebsgene durch eine Verringerung der DNA-Methylierung aktiviert werden. Ferner scheinen primäre Epimutationen, also Deregulationen der epigenetischen Schalter, auch eine Rolle bei Herz-Kreislauf-Erkrankungen zu spielen. Vermutlich führt auch die künstliche Befruchtung im Reagenzglas zu epigenetischen Veränderungen. Das kann Fehlbildungen, verändertes Wachstum des Embryos oder auch andere Konsequenzen zur Folge haben.

Seit wenigen Jahren häufen sich Beobachtungen, dass Umwelteinflüsse wie Ernährung und Drogen sich ebenfalls auf das Epigenom auswirken können. Mehr noch, der betreffende Organismus kann ein epigenetisches Gedächtnis entwickeln, so dass die Veränderungen über mehrere Generationen hinweg bestehen bleiben. Verschiedene Experimente an Mäusen zeigen eindeutig, dass die Ernährung schwangerer Mäuse nicht nur Einfluss auf den Gesundheitszustand der direkten Nachkommen hat, sondern sich auch auf weitere Generationen auswirkt. Viel zitiert ist das Beispiel der Agouti-Mäuse, die eine starke, offensichtlich epigenetisch bedingte Prädisposition für Fettsucht, Diabetes und Krebs besitzen. Durch die Fütterung schwangerer Tiere mit Vitaminen und anderen Nahrungsergänzungsmitteln können die Nachkommen über Generationen hinweg von diesen Leiden "geheilt" werden. Noch erstaunlicher ist die Erkenntnis, dass Epimutationen möglicherweise auch durch traumatische Ereignisse oder Erfahrungen entstehen können. So waren primäre Epimutationen in bestimmten Hirnarealen einer Gruppe von Selbstmördern nachweisbar, die in der Kindheit missbraucht wurden.

Informationen: Prof. Anna Starzinski-Powitz, Humangenetik, Bio-Campus Siesmayerstraße, Tel.: (069) 798-24809, starzinski-powitz@bio.uni-frankfurt.de

Ulrike Jaspers | idw
Weitere Informationen:
http://www.uni-frankfurt.de
http://www.forschung-frankfurt.uni-frankfurt.de/2009/index.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterien aus dem Blut «ziehen»
07.12.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht HIV: Spur führt ins Recycling-System der Zelle
07.12.2016 | Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie