Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Epigenetik: Die Gene sind nicht alleine schuld

09.04.2009
Wie mächtig ist das Erbe unserer Gene? Das mögen sich vor allem Menschen fragen, die eine genetische Prädisposition für bestimmte Krankheiten wie Herz-Kreislauf- oder Stoffwechselerkrankungen haben. Bis vor wenigen Jahren hätten selbst gewiefte Genetiker noch keine Antwort auf diese Fragen geben können.

Doch mit dem Fortschreiten der Molekularbiologie hat sich der Wissenschaftszweig der Epigenetik enorm weiter entwickelt. Wie und warum auch unsere Lebensweise und Umwelt darüber entscheiden, ob Gene aktiv werden oder nicht, erläutert die Humangenetikerin Prof. Anna Starzinski-Powitz in der aktuelle Ausgabe von "Forschung Frankfurt".

Epigenetische Studien belegen inzwischen klar, dass von der Umwelt verursachte Veränderungen des Phänotyps, also das aus den Genen hervorgegangene Erscheinungsbild des Menschen, uns das ganze Leben prägen können. Mehr noch: diese Veränderungen können an nachfolgende Generationen weitergegeben werden. Umwelteinflüsse fördern oder verstärken nach unserem heutigen Verständnis Krankheiten wie Diabetes, Krebs, Fettsucht, aber auch natürliche Vorgänge wie die Embryonalentwicklung und Regenerationsprozesse.

Damit Gene ihre Merkmale ausprägen können, müssen sie aktiv, also angeschaltet sein. Geschieht dies zur falschen Zeit, können Entwicklungsstörungen oder Krankheiten die Folge sein. Um das zu verhindern, gibt es molekulare Schalter, die in jeder Zelle ein typisches Muster aktiver und inaktiver Gene aufrechterhalten. Die globalen (genomweiten) epigenetischen Muster, die zwangsläufig zwischen verschiedenen Zelltypen variieren und sie unterscheiden, nennt man Epigenom.

Die Studien vieler Wissenschaftler haben zu der heute einhellig akzeptierten Vorstellung geführt, dass eine chemische Modifikation der DNA mit Methylgruppen, insbesondere in den Steuerregionen von Genen, zum Abschalten von Genen wichtig ist. Einen weiteren epigenetischer Mechanismus stellen Modifikationen von Histonen dar, die für die Verpackung der DNA essentiell sind. Sie werden durch Acetyl- oder Methylgruppen modifiziert. Dabei entsteht eine Art Code, ähnlich dem Strichcode im Warenverkauf, wodurch der Zugang von Proteinen der Transkriptionsmaschinerie an die Steuerregionen der Gene und damit deren Aktivität reguliert werden kann.

Für die biomedizinische Forschung sind solche Mechanismen von großer Bedeutung. So weiß man inzwischen, dass beispielsweise Krebsgene durch eine Verringerung der DNA-Methylierung aktiviert werden. Ferner scheinen primäre Epimutationen, also Deregulationen der epigenetischen Schalter, auch eine Rolle bei Herz-Kreislauf-Erkrankungen zu spielen. Vermutlich führt auch die künstliche Befruchtung im Reagenzglas zu epigenetischen Veränderungen. Das kann Fehlbildungen, verändertes Wachstum des Embryos oder auch andere Konsequenzen zur Folge haben.

Seit wenigen Jahren häufen sich Beobachtungen, dass Umwelteinflüsse wie Ernährung und Drogen sich ebenfalls auf das Epigenom auswirken können. Mehr noch, der betreffende Organismus kann ein epigenetisches Gedächtnis entwickeln, so dass die Veränderungen über mehrere Generationen hinweg bestehen bleiben. Verschiedene Experimente an Mäusen zeigen eindeutig, dass die Ernährung schwangerer Mäuse nicht nur Einfluss auf den Gesundheitszustand der direkten Nachkommen hat, sondern sich auch auf weitere Generationen auswirkt. Viel zitiert ist das Beispiel der Agouti-Mäuse, die eine starke, offensichtlich epigenetisch bedingte Prädisposition für Fettsucht, Diabetes und Krebs besitzen. Durch die Fütterung schwangerer Tiere mit Vitaminen und anderen Nahrungsergänzungsmitteln können die Nachkommen über Generationen hinweg von diesen Leiden "geheilt" werden. Noch erstaunlicher ist die Erkenntnis, dass Epimutationen möglicherweise auch durch traumatische Ereignisse oder Erfahrungen entstehen können. So waren primäre Epimutationen in bestimmten Hirnarealen einer Gruppe von Selbstmördern nachweisbar, die in der Kindheit missbraucht wurden.

Informationen: Prof. Anna Starzinski-Powitz, Humangenetik, Bio-Campus Siesmayerstraße, Tel.: (069) 798-24809, starzinski-powitz@bio.uni-frankfurt.de

Ulrike Jaspers | idw
Weitere Informationen:
http://www.uni-frankfurt.de
http://www.forschung-frankfurt.uni-frankfurt.de/2009/index.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mitochondrien von Krebszellen im Visier
14.12.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Wie die Niere bei Wassermangel hochkonzentrierten Urin herstellt
14.12.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mitochondrien von Krebszellen im Visier

14.12.2017 | Biowissenschaften Chemie

Grazer Forscher stellen Methode zur dreidimensionalen Charakterisierung vulkanischer Wolken vor

14.12.2017 | Geowissenschaften

Leibniz-Preise 2018: DFG zeichnet vier Wissenschaftlerinnen und sieben Wissenschaftler aus

14.12.2017 | Förderungen Preise