Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Epigenetik - Die Mustermacher

28.01.2016

Kleine Veränderungen an der Protein-Verpackung der DNA, die die Genaktivität steuern, können sich zu wiederkehrenden Motiven kombinieren und beeinflussen sich gegenseitig.

Alle Zellen eines Organismus enthalten dieselben Gene – trotzdem läuft etwa in Muskelzellen ein völlig anderes genetisches Programm ab als in Nervenzellen. Welche Gene wann und wo aktiv sind, wird über epigenetische Modifizierungen gesteuert, bei denen molekulare Schalter an bestimmte Proteine angeheftet werden.


Grafik: norman blue / Fotolia.com

Wissenschaftler um Professor Peter Becker vom Biomedizinischen Centrum (BMC) der LMU und Dr. Carsten Marr vom Helmholtz Zentrum München haben gezeigt, dass sich benachbarte Modifikationen gegenseitig beeinflussen. Ihre Ergebnisse ermöglichen auch neue Einblicke in die Mechanismen der epigenetischen Genregulation. Die neue Studie wurde nun im Fachmagazin Cell Systems publiziert.

Acetylierung ist eine der wichtigsten Modifikationen von Histon-Proteinen, die im Zellkern einen schützenden Mantel um die dicht gepackte DNA bilden. Kleine Acetylgruppen dienen dabei als molekulare Schalter, mit denen die Zelle die Zugänglichkeit und damit die Aktivität von Genen regulieren kann.

Vermittelt wird die Acetylierung von Enzymen, die Acetylgruppen spezifisch auf bestimmte Proteinbausteine übertragen beziehungsweise wieder entfernen. Histone besitzen jedoch mehrere Acetyl-Andockstellen, sodass räumlich benachbarte Acetylierungen zu Mustern – sogenannten Motiven – kombiniert sein können. „Wir gehen davon aus, dass dabei nicht nur die einzelne Acetylierung eine Funktion hat, sondern auch das Muster als Ganzes“, sagt Becker.

In einer früheren Studie, bei der Beckers Team Acetylierungsenzyme systematisch stilllegte, fanden die Wissenschaftler außerdem zu ihrer Überraschung, dass in der Nähe der Zielstruktur des ausgeschalteten Enzyms neue Acetylierungen hinzukamen, sodass die Summe der Acetylierungen innerhalb eines Motivs sehr ähnlich blieb.

Komplexe Interaktionen

„Im Unterschied zu bisherigen Theorien scheinen sich benachbarte Acetylierungen also gegenseitig zu beeinflussen“, sagt Christian Feller, der das Projekt während seiner Doktorarbeit vorangetrieben hat. „Bestimmte Motive kommen häufiger vor als andere. Auch das spricht dafür, dass Acetylierungs-Motive nicht zufällig entstehen. Wegen der sehr komplexen Interaktionen zwischen den beteiligten Molekülen kann man mit biochemischen Methoden alleine allerdings nicht aufklären, welche Mechanismen zur Bildung bestimmter Motive führen.“

Aus diesem Grund kombinierten die Wissenschaftler die experimentellen Daten aus der früheren Studie mit einem theoretischen Ansatz: Das Drosophila-Histon H4 trägt an einem Ende vier benachbarte acetylierbare Bausteine, sodass potenziell 16 verschiedene Motive entstehen können – je nachdem, welcher Baustein acetyliert oder nicht acetyliert vorliegt. Welches Motiv wie oft vorkommt, hatte Beckers Team bereits experimentell ermittelt.

Das Team des Theoretikers Marr simulierte nun die Entstehung dieser Motive mithilfe mathematischer Modelle, mit denen sich anhand vorgegebener Randbedingungen – insbesondere der Acetylierungsraten – errechnen lässt, wie häufig ein bestimmtes Motiv vorkommt. Anschließend verglichen die Wissenschaftler die Ergebnisse mit den experimentell ermittelten Daten – je besser die Werte übereinstimmen, desto besser spiegelt das Modell die Realität wider.

Mehr als eine Milliarde Modelle

Die Modelle wurden dann durch Variation der Randbedingungen immer weiter verbessert und neu gerechnet. „Insgesamt haben wir mehr als eine Milliarde Modelle durchgerechnet, bis wir das bestmögliche Modell identifizieren konnten“, sagt Marr. „Dieses Modell basiert auf der Annahme, dass spezifische Enzyme die Bausteine mit jeweils unterschiedlichen Raten acetylieren, und dass existierende Acetylierungen die Modifikation benachbarter Bausteine beeinflussen.“

Die mathematische Modellierung bestätigt damit, dass die Acetylierung motiv-spezifisch ist. Darüber hinaus lassen sich Reaktionswege identifizieren und ermöglichen damit einen genaueren Einblick in das Acetylierungsnetzwerk der Zellen. In einem zweiten Schritt zeigte der Vergleich mit einem experimentellen Datensatz der nicht für die Modellierung verwendet wurde, dass die Simulation gut voraussagt, wie sich die gefundenen Reaktionswege durch den Ausfall bestimmter Enzyme ändern.

Nach Ansicht der Wissenschaftler ist das Modell ein wertvolles Instrument, um die Funktion von Enzymen zu untersuchen, zu denen es noch keine experimentellen Daten gibt. „Auf diese Weise können wir einen tieferen Einblick in die Mechanismen der Acetylierung gewinnen und möglicherweise in Zukunft Methoden entwickeln, die Histon-Acetylierung gezielt zu beeinflussen“, sagt Becker. „Dies hätte potenziell auch therapeutische Relevanz, da Fehler bei der Histon-Acetylierung zur Entstehung zahlreicher Krankheiten beitragen.“

Publikation:
Combinatorial histone acetylation patterns are generated by motif-specific reactions
Thomas Blasi, Christian Feller, Justin Feigelman, Jan Hasenauer, Axel Imhof , Fabian J. Theis, Peter B. Becker, Carsten Marr
Cell Systems 2016
http://www.cell.com/cell-systems/abstract/S2405-4712%2816%2900003-X

Kontakt:
Prof. Dr. Peter Becker
Biomedizinisches Centrum der LMU
Molekularbiologie
Te.: 089-2180-75-427
pbecker@med.uni-muenchen.de
http://www.molekularbiologie.abi.med.uni-muenchen.de/personen/becker_group/becke...

Luise Dirscherl | Ludwig-Maximilians-Universität München
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: Acetylgruppen Acetylierung Epigenetik molekulare Schalter

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

nachricht Nervenkrankheit ALS: Mehr als nur ein Motor-Problem im Gehirn?
16.01.2017 | Leibniz-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Im Focus: Der Klang des Ozeans

Umfassende Langzeitstudie zur Geräuschkulisse im Südpolarmeer veröffentlicht

Fast drei Jahre lang haben AWI-Wissenschaftler mit Unterwasser-Mikrofonen in das Südpolarmeer hineingehorcht und einen „Chor“ aus Walen und Robben vernommen....

Im Focus: Wie man eine 80t schwere Betonschale aufbläst

An der TU Wien wurde eine Alternative zu teuren und aufwendigen Schalungen für Kuppelbauten entwickelt, die nun in einem Testbauwerk für die ÖBB-Infrastruktur umgesetzt wird.

Die Schalung für Kuppelbauten aus Beton ist normalerweise aufwändig und teuer. Eine mögliche kostengünstige und ressourcenschonende Alternative bietet die an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

Leipziger Biogas-Fachgespräch lädt zum "Branchengespräch Biogas2020+" nach Nossen

11.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Proteinforschung: Der Computer als Mikroskop

16.01.2017 | Biowissenschaften Chemie

Vermeintlich junger Stern entpuppt sich als galaktischer Greis

16.01.2017 | Physik Astronomie

Erste "Rote Liste" gefährdeter Lebensräume in Europa

16.01.2017 | Ökologie Umwelt- Naturschutz