Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Enzyme sich selbst eine Falle stellen: Neue Erkenntnisse zur Deaktivierung von Sirtuinen

09.07.2013
Sirtuine sind Enzyme, die an der Steuerung von Stoffwechsel- und Alterungsprozessen einen entscheidenden Anteil haben. Können sie durch pharmakologische Wirkstoffe so beeinflusst werden, dass sie die Therapie schwerer Erkrankungen fördern?

Von besonderem Interesse ist in diesem Zusammenhang eine unter dem Namen "Ex-527" bekannte Substanz, die möglicherweise eines Tages zum Beispiel in der Krebsbekämpfung eingesetzt werden könnte.

Wie die Aktivität von Sirtuinen durch Ex-527 unterdrückt wird, hat jetzt eine Forschungsgruppe um Prof. Dr. Clemens Steegborn an der Universität Bayreuth aufklären können. Im Forschungsmagazin PNAS stellen die Wissenschaftler einen überraschenden Mechanismus vor.

Sirtuine durch Wirkstoffe zielgenau beeinflussen:
Ansatzpunkte der pharmakologischen Forschung
Im Menschen kommen sieben verschiedene Sirtuine vor, sie werden in der Forschung als "Sirt1" bis "Sirt7" bezeichnet. Indem sie die Strukturen wichtiger Proteine verändern, erzeugen sie wesentliche Signale für zelluläre Prozesse, beispielsweise für die Bildung neuer Proteine auf der Grundlage genetischer Informationen oder für die Anpassung des Nährstoffabbaus. Wirkstoffe, die imstande sind, ein Sirtuin zu aktivieren, bieten deshalb interessante Ansatzpunkte für die Entwicklung von Medikamenten. So könnte etwa eine zielgenaue, unerwünschte Nebenwirkungen ausschließende Aktivierung von Sirt1 ein Weg sein, um Stoffwechselstörungen zu heilen.

In anderen Fällen wiederum lassen sich therapeutische Effekte möglicherweise dadurch erzielen, dass die Aktivität eines Sirtuins unterdrückt wird. Insbesondere die zielgenaue Hemmung von Sirt1 oder Sirt3 gilt heute in der Forschung als eine ernstzunehmende Perspektive für die Tumorbekämpfung. Eine Substanz, die eine hemmende Wirkung auf Sirtuine hat und insofern als Inhibitor wirkt, ist Ex-527; die exakte Bezeichnung lautet "6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide".

Wie Sirtuine die eigene Deaktivierung ermöglichen:
Ein überraschender Mechanismus legt ihr Aktivitätszentrum lahm
Damit auf der Basis dieser Erkenntnisse geeignete pharmakologische Wirkstoffe entwickelt werden können, ist zuvor eine intensive Grundlagenforschung erforderlich. Vor allem muss der biochemische Mechanismus geklärt sein, durch den Ex-527 die Aktivität von Sirt1 oder Sirt3 unterdrückt. An diesem Punkt ist der Bayreuther Forschungsgruppe um Prof. Dr. Clemens Steegborn in Zusammenarbeit mit Prof. Dr. Mike Schutkowski an der Martin-Luther-Universität Halle-Wittenberg jetzt ein Durchbruch gelungen.

Sirtuine verändern die Strukturen von Proteinen, indem sie an ausgewählten Stellen dieser Moleküle – genauer gesagt: an den Lysingruppen der Proteine – Acetylgruppen abspalten. Dieser Vorgang, die Deacetylierung, wird dadurch eingeleitet, dass drei molekulare Strukturen aufeinander treffen: das Sirtuin, das Protein und eine dritte Substanz namens "NAD+". Ist die Deacetylierung abgeschlossen, sind zwei Produkte entstanden: das Protein, das jetzt eine deacetylierte Lysingruppe enthält, und acetylierte ADP-Ribose (2’-O-acetyl-ADP ribose). Das Sirtuin ist unverändert. Normalerweise fährt es jetzt fort, mit anderen Protein- und NAD+-Molekülen weitere Deacetylierungen in Gang zu setzen.

Doch an genau dieser Fortsetzung wird das Sirtuin von Ex-527 gehindert. Denn indem das Sirtuin eine Deacetylierung bewirkt, schafft es selbst die Voraussetzungen dafür, dass es unmittelbar anschließend von Ex-527 lahmgelegt wird. Ex-527 verbindet sich nämlich einerseits mit dem Sirtuin, andererseits mit der acetylierten ADP-Ribose. Dabei sorgt Ex-527 dafür, dass die acetylierte ADP-Ribose sich an genau der Stelle des Sirtuins festsetzt, wo normalerweise der Kontakt mit einem neuen NAD+-Molekül stattfinden und eine weitere Deacetylierung in Gang gesetzt würde. Hier befindet sich daher das Aktivitätszentrum des Sirtuins. Doch das Sirtuin kann sich nicht von der acetylierten ADP-Ribose befreien, und so ist den nachfolgenden NAD+-Molekülen der Zugang zum Sirtuin versperrt. Das Aktivitätszentrum des Sirtuins bleibt blockiert; es ist nicht imstande, mit der Deacetylierung von Proteinen fortzufahren. So hat sich das Sirtuin gleich beim ersten Mal eine Falle gestellt, in der es gefangen bleibt.

Ex-527 – eine attraktive Substanz für die weitere Wirkstoff-Forschung

Die Bayreuther Biochemiker haben zudem entdeckt, dass Ex-527 seine inhibierende Wirkung auf genau diese und keine andere Weise ausübt. Andere beobachtete Konstellationen – beispielsweise eine Verbindung von Ex-527 mit Sirtuin und NAD+ – sind nicht geeignet, die Aktivität des Sirtuins zu unterbinden. "Unsere Forschungsergebnisse zeigen, dass Ex-527 ein Inhibitor mit einer ungewöhnlichen und zugleich sehr Sirtuin-spezifischen Wirkungsweise ist. Gerade das macht diese Substanz zu einem besonders attraktiven Ansatzpunkt für weitere Untersuchungen", erklärt Prof. Steegborn. "Zudem zeigen unsere Ergebnisse Wege auf, wie die Substanz weiter verbessert werden kann, um gezielt nur die Aktivität eines einzigen Sirtuins zu hemmen." Denn grundsätzlich gilt: Je spezifischer die Wirkungsweise einer Substanz ist, die ein Sirtuin hemmt oder aktiviert, desto besser sind die Aussichten, dass sie als pharmakologischer Wirkstoff infrage kommt. Unüberschaubare Nebenwirkungen müssen von vornherein ausgeschlossen werden können.

Veröffentlichung:

Melanie Gertz, Frank Fischer, Giang Thi Tuyet Nguyen, Mahadevan Lakshminarasimhan, Mike Schutkowski, Michael Weyand, and Clemens Steegborn,
Ex-527 inhibits Sirtuins by exploiting their unique NAD+-dependent deacetylation mechanism,
PNAS 2013 ; published in the week of July 8 - July 12, 2013
DOI: 10.1073/pnas.1303628110 (when published)
Ansprechpartner:
Prof. Dr. Clemens Steegborn
Lehrstuhl für Biochemie
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921 55 2421
E-Mail: clemens.steegborn@uni-bayreuth.de

Christian Wißler | idw
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie