Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Enzyme des Fettstoffwechsels: Wenn Erreger ihr Fett wegkriegen

29.08.2008
Max-Planck-Forscher entschlüsseln die Struktur eines zentralen Enzyms des Fettstoffwechsels, das von einem Antibiotikum blockiert wird. Dieses Ergebnis könnte helfen, Infektionen wirksamer zu bekämpfen.

Fettsäuren gehören zu den unverzichtbaren Bausteinen aller lebenden Zellen. Ohne sie könnten die Zellen zum Beispiel keine Membranen bilden und sich auch nicht teilen.


Ein Schnitt durch die Cerulenin-inhibierte Fettsäuresynthase der Hefe zeigt die zentrale hochsymmetrische a-Rad-Struktur. Pro Fettsäuresynthase findet man 6 Ketoacylsynthasen (in blau dargestellt), die von jeweils einem Molekül Cerulenin (in rot) gehemmt werden. Weitere Einheiten der Fettsäuresynthase sind in grün und weiß gezeigt. Mit einem Durchmesser von etwa 25 Nanometer (1nm = 1Tausendstel Mikrometer) gehört die Fettsäuresynthase aus Hefe zu den größten bekannten Enzymstrukturen und erreicht damit die Dimension von Viren. Abbildung: Patrik Johanson/Martin Grininger, MPI für Biochemie

Sie werden von Fettsäuresynthasen hergestellt, was diese Enzyme zu vielversprechenden Zielmolekülen in der Bekämpfung von Krankheitserregern macht. Denn Bakterien und Pilze gehen ohne funktionierende Fettsäuresynthasen zugrunde. Oft aber blockieren Antibiotika mit entsprechender Wirkung auch menschliche Fettsäuresynthasen, die den Enzymen aus Bakterien und Pilzen extrem ähnlich sind.

Ein Forscherteam um Martin Grininger und Dieter Oesterhelt vom Max-Planck-Institut für Biochemie konnte nun erstmals die molekulare Struktur der Fettsäuresynthase aus Hefe während der Hemmung durch ein Antibiotika entschlüsseln. Diese Ergebnisse liefern wichtige Einblicke in die Synthese von Fettsäuren und könnten für die Entwicklung hochspezifischer Antibiotika, wie auch neuartiger Krebstherapeutika genutzt werden. (PNAS, Early Edition, 25.08.2008)

Die Fettsäuresynthese ist einer der Schlüsselwege des zellulären Stoffwechsels. Struktur, Funktion und Hemmung der daran beteiligten Enzyme werden seit Jahrzehnten intensiv erforscht. Blockiert man an der Fettsäuresynthese beteiligte Enzyme, führt das zu einer Verarmung an Fettsäuren und letztlich unweigerlich zum Zelltod. Die Bedeutung der Fettsäuren will man sich nun zunutze machen, um über die gezielte Blockade der Enzyme des Fettsäurestoffwechsels wie zum Beispiel der Fettsäuresynthase von Erregern eine antibiotische Wirkung zu erzielen.

Dabei gibt es aber ein zentrales Problem. "Wie man seit längerem weiß, findet man in der Natur verschiedene Systeme zur Synthese von Fettsäuren. In höheren Organismen etwa gibt es eine Fettsäuresynthase, die sich aus großen multifunktionalen Enzymkomplexen zusammensetzt", erklärt Grininger. "In den meisten Bakterien findet man diese Funktionseinheiten hingegen als separate Proteine, die für jeweils einen Schritt in diesem komplexen Stoffwechselweg verantwortlich sind. Obwohl wir große Unterschiede im Aufbau und in der Architektur der Fettsäuresynthasen beobachten, ist die Grundstruktur der Enzyme in allen Lebensformen stark konserviert." Diese Ähnlichkeit in den Enzymstrukturen macht eine spezifische Blockade der Fettsäuresynthase in Erregern ohne Beeinträchtigung der entsprechenden menschlichen Enzyme, sehr schwierig.

Um die Synthese von maßgeschneiderten Inhibitoren zu ermöglichen und so die spezifische Hemmung von Fettsäuresynthasen zu erreichen, ist es daher wichtig strukturelle Information über diese Enzym-Inhibitor-Komplexe zu gewinnen. Patrik Johansson und Martin Grininger gelang es mit ihren Kollegen am Martinsrieder Max-Planck-Institut unter Leitung von Dieter Oesterhelt, Fettsäuresynthase aus Hefe mit einem Antibiotikum gemeinsam zu kristallisieren und die Molekülstruktur im Komplex aufzuklären. Hefen werden oft als Modellorganismen bei der Erforschung zellulärer Vorgänge genutzt, weil Hefezellen wie alle Eukaryonten einen Zellkern besitzen und viele Abläufe wie in menschlichen Zellen ablaufen. In der aktuellen Publikation präsentieren die Wissenschaftler jetzt die Struktur einer komplexen Fettsäuresynthase mit dem gebundenen Inhibitor Cerulenin (s. Abb.1).

Die Strukturforscher konnten zeigen, dass Cerulenin im Zentrum des Moleküls die Funktionseinheit Ketoacylsynthase angreift, die bei allen Organismen im Laufe der Evolution erhalten blieb. Damit liefern die Wissenschaftler eine Erklärung, warum Cerulein ein unspezifischer Hemmer von Fettsäuresynthasen ist und in der Medizin als Antibiotikum stärkere Nebenwirkungen hat: Es hemmt auch wichtige Strukturen der menschlichen Fettsäuresynthase.

Vielversprechender für einen medizinischen Einsatz sind spezifische Inhibitoren, die nur die Eigenheiten der bakteriellen Fettsäuresynthase erkennen und so nicht auf das menschliche Gegenstück reagieren. Für zwei Vertreter dieser neuen Generation von spezifischen Antibiotika, konnten die Max-Planck-Forscher jetzt zeigen, dass sie an ganz bestimmten Molekülbereichen binden, die abseits der Cerulenin-Bindestelle liegen und einen Bereich nutzen, der im Laufe der Evolution sehr verändert wurde und variabel ist. Damit liefern die Wissenschaftler eine Erklärung, warum die beiden spezifischen Inhibitoren die bakterielle Fettsäuresynthase blockieren, die menschliche Fettsäuresynthase jedoch unbeeinflusst bleibt.

Mit ihren neuen Ergebnissen, bringen die Martinsrieder Forscher die Forschung an der therapeutischen Hemmung der Fettsäuresynthese um einen wichtigen Schritt weiter. "Wir konnten erstmals eine komplexe Fettsäuresynthase in blockierter Form darstellen. Das erhöht das Wissen um den strukturellen Hintergrund der Synthese von Fettsäuren und ihrer Inhibierung ungemein. Unsere Ergebnisse bilden somit die Basis, um die Fettsäuresynthese als Ziel für Antibiotika weiter zu etablieren". "Wir werden auch in Zukunft versuchen, neue Ansätze zur Verbesserung der Selektivität von Inhibitoren der Fettsäuresynthasen zu liefern", so Grininger auf die Frage nach weiteren Forschungsvorhaben.

Weitere Informationen erhalten Sie von:

Dr. Martin Grininger
Max-Planck-Institut für Biochemie
Tel.: +49 89 8578 2382
E-Mail: grininge@biochem.mpg.de

Eva-Maria Diehl | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.biochem.mpg.de/oesterhelt
http://www.biochem.mpg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften