Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Enzym stoppt Alterungsprozesse in Zellen

13.12.2013
Reparaturenzym beseitigt durch freie Radikale verursachte DNA-Schäden

Jede Zelle benötigt zur Verrichtung ihrer Aufgabe Energie, die sie in zelleigenen Kraftwerken selbst produziert, den Mitochondrien. Diese arbeiten allerdings nicht fehlerfrei, so dass sogenannte freie Radikale entstehen. Die Zellgifte schädigen unter anderem die Mitochondrien-eigene DNA.


Twinkle hält das Herz jung: Die Abbildungen zeigen Querschnitte durch die beiden Herzkammern, aufgenommen mit Hilfe der Magnetresonanztomographie (MRT). Links das Herz einer Kontrollmaus. Mitte: Fehlt das Gen für einen Radikalenfänger, altert das Herz viel schneller. Dies zeigt sich in diesem Fall am kleineren Querschnitt des Herzens. Rechts: Wird zusätzlich das Reparaturenzym Twinkle verstärkt gebildet, behält das Herz seine normale Größe.

© MPI f. Herz- und Lungenforschung

Wissenschaftlern vom Max-Planck-Institut für Herz- und Lungenforschung in Bad Nauheim ist es nun zusammen mit einem internationalen Forscherteam gelungen, in Herzmuskelzellen von Mäusen einen Schutzmechanismus zu installieren, der die Schäden an der Mitochondrien-DNA weitestgehend verhindert. Sie hoffen, dass sie damit einen Ansatz gefunden haben, wie die Zellalterung wirksam verhindert werden kann.

Kaum ein anderer Zelltyp leistet derart viel wie Herzmuskelzellen. Für ihre Kontraktionsarbeit benötigen sie extrem viel Energie. Deshalb sind in Herzmuskelzellen besonders viele Mitochondrien zu finden. Diese Kraftwerke der Zelle produzieren den Treibstoff, das ATP.

Ganz ähnlich wie bei Industriekraftwerken entstehen dabei Schadstoffe. Diese als freie Radikale bezeichneten hochreaktiven Substanzen entstehen in den Mitochondrien beim Veratmen von Sauerstoff, weil die Energiegewinnung an einigen Punkten nicht fehlerfrei abläuft.

Freie Radikale sind Zellgifte. Den Mitochondrien wird dabei vor allem zum Verhängnis, dass sie eine eigene Erbinformation besitzen, die Mitochondrien-DNA. Diese wird von den Radikalen attackiert. Über einen langen Zeitraum führt dies zu Schäden an der DNA und den Mitochondrien insgesamt, obwohl verschiedene Reparaturmechanismen existieren. Dieser Prozess wird als wesentlicher Faktor für die Alterung und das Absterben von Zellen angesehen.

Wissenschaftler aus der Arbeitsgruppe von Thomas Braun am Max-Planck-Institut für Herz- und Lungenforschung in Bad Nauheim haben nun zusammen mit Kollegen aus den USA und Finnland nach Wegen gesucht, die Schädigung der Mitochondrien durch freie Radikale zu verhindern. Dabei verwendeten sie zunächst bestimmte gentechnisch veränderte Mäuse. Diesen fehlt ein Gen für ein Enzym, das eigentlich den größten Teil der entstehenden Radikale unschädlich macht. „Mäuse, denen das Enzym komplett fehlt, sterben gleich nach der Geburt. Deshalb haben wir bei unseren Mäusen lediglich eine der beiden Genkopien ausgeschaltet“, erklärt der Leiter der Studie Jaakko Pohjoismäki. Die Mäuse zeigten im Vergleich zu Kontrolltieren deutlich mehr Schäden an der Mitochondrien-DNA. In der Folge nahmen die Schäden am Herzmuskel mit zunehmendem Alter der Tiere zu. „Wir beobachteten typische alterungsbedingte Krankheitssymptome wie Herzmuskelschäden“, so Braun.

An derart vorbelasteten Tieren versuchten die Wissenschaftler nun die Reparatur der geschädigten DNA zu optimieren. „Die Mäuse erhielten eine zusätzliche Kopie eines Gens mit dem Namen Twinkle, das normalerweise in Herzmuskelzellen nur relativ schwach aktiv ist. Dieses kodiert für ein Enzym, das für die „Aufwicklung“ der Erbsubstanz DNA bei der Vermehrung von Mitochondrien zuständig und für die Reparatur der DNA wichtig ist“, erläutert Pohjoismäki. Ist es vermehrt aktiv, nimmt die mitochondriale DNA eine andere Organisationsform an, welche die DNA widerstandsfähiger oder einfacher reparierbar machen könnte.

Und genau dieses geschah nun bei den Mäusen: „Im Gegensatz zu den erwähnten Schädigungen bei den Mäusen ohne Twinkle blieben die Schäden an der Mitochondrien-DNA bei den Tieren mit erhöhter Expression von Twinkle weitestgehend aus“, sagt Pohjoismäki. Dadurch werden weniger Mitochondrien zerstört und weniger Herzmuskelzellen sterben ab. Folglich wird auch der Herzmuskel nicht geschädigt.

Aus Sicht der Max-Planck-Forscher ist es in der Studie gelungen, die Toleranz der Herzmuskelzellen gegen wichtige Zellgifte wie die freien Radikale zu steigern. „Freie Radikale spielen nicht nur bei der Zellalterung, sondern auch bei akuten Erkrankungen wie dem Herzinfarkt eine wichtige Rolle. Deshalb hoffen wir, dass wir die Grundlage für neue Therapien schaffen konnten“, so Braun. Zudem ergeben sich nach seiner Meinung auch Ansätze dafür, die durch die freien Radikale verursachten Alterungsprozesse in den Zellen zu verlangsamen.

Ansprechpartner

Prof. Dr. Dr. habil. Thomas Braun
Max-Planck-Institut für Herz- und Lungenforschung, Bad Nauheim
Telefon: +49 6032 705-1102
Fax: +49 6032 705-1104
E-Mail: thomas.braun@mpi-bn.mpg.de
Dr. Matthias Heil
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Herz- und Lungenforschung, Bad Nauheim
Telefon: +49 6032 705-1705
Fax: +49 6032 705-1704
E-Mail: matthias.heil@mpi-bn.mpg.de
Originalpublikation
Jaakko L. O. Pohjoismäki, Siôn L. Williams, Thomas Böttger, Steffi Goffart, Johnny Kim, Anu Suomalainen, Carlos T. Moraes, and Thomas Braun

Overexpression of Twinkle-helicase protects cardiomyocytes from genotoxic stress caused by reactive oxygen species.

PNAS, online veröffentlicht, 6. November 2013 (doi: 10.1073/pnas.1303046110)

Prof. Dr. Dr. habil. Thomas Braun | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7663933/alternde_herzzellen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie