Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Enzym mit eingebauter Bremse

11.07.2016

Forscher schalten die Schwachstelle eines wertvollen biologischen Katalysators aus

Das natürlich in Zellen vorkommende Enzym DERA beschleunigt Reaktionen, aus denen begehrte Grundstoffe für Medikamente wie Cholesterin-Senker entstehen. Für die Pharmazeutische Industrie hätte es dadurch längst ein lukratives Werkzeug werden können.


Globale Struktur des DERA-Enzyms.

HHU / Forschungszentrum Jülich


Nahaufnahme des katalytischen Zentrums im deaktivierten Zustand.

HHU / Forschungszentrum Jülich

In der Praxis geht die Aktivität des Enzyms jedoch wieder verloren, sobald höhere Konzentrationen seines Reaktionspartners erreicht werden. Forscher entdeckten nun als Ursache einen unerwarteten, im Molekül eingebauten Blockade-Mechanismus, der durch minimale Veränderung der Enzymstruktur entfernt werden konnte.

Die Studie wurde in der aktuellen Ausgabe des renommierten Journals Chemical Science der Royal Society of Chemistry veröffentlicht.

Enzyme sind hocheffiziente Werkzeuge der Natur, die Reaktionen stark beschleunigen oder überhaupt erst in Gang bringen. Viele Vorgänge im Körper benötigen die Unterstützung der natürlichen Katalysatoren, und auch für die Industrie bieten sie oft eine Präzision und Effizienz, die mit anderen chemischen Syntheseverfahren kaum zu erreichen ist. Allerdings ist den Proteinmolekülen, aus denen Enzyme bestehen, oft eine gewisse Fragilität zu eigen, die unter industriellen Bedingungen zu Schwierigkeiten führen kann.

Ein solcher Fall ist das Enzym DERA. Es katalysiert sogenannte Aldol-Reaktionen, bei denen Grundsubstanzen für verschiedene Medikamente aus dem günstigen Ausgangsstoff Acetaldehyd entstehen – etwa die Vorstufen von Statinen, die als Cholesterin-Senker einen Milliardenmarkt ausmachen. Doch leider arbeitet DERA nur bei relativ niedrigen Konzentrationen von Acetaldehyd. Wird ein bestimmter Schwellenwert überschritten, kommt die enzymatische Aktivität völlig zum Erliegen und kehrt auch nicht wieder, wenn die Konzentration wieder sinkt.

„Ein Katalysator, der so empfindlich auf das Ausgangsmaterial reagiert, ist natürlich für die Industrie nur schwer einsetzbar“, sagt Prof. Dr. Jörg Pietruszka, Leiter des Instituts für Bioorganische Chemie (IBG-1: Biotechnologie) der Heinrich-Heine-Universität Düsseldorf (HHU) auf dem Campus des Forschungszentrums Jülich. „Deshalb wollten wir genauer untersuchen, was die Ursache der mangelnden Stabilität ist.“

Gemeinsam mit Strukturbiologen des Jülicher Institute of Complex Systems: Strukturbiochemie (ICS-6) und des Düsseldorfer Instituts für Physikalische Biologie nutzten die Forscher eine Kombination extrem hochauflösender Verfahren, um die Reaktionsschritte mit molekularer Präzision zu beobachten. Die bisherige Vermutung, dass Acetaldehyd als recht aggressiver Stoff die empfindliche Proteinstruktur zerstöre, bestätigte sich dabei nicht.

Stattdessen offenbarten die eingesetzten Verfahren NMR-Spektroskopie und Röntgenstrukturanalyse ein seltenes Nebenprodukt der Reaktion als tatsächliche Ursache. Sogenanntes Crotonaldehyd, ein kleines Molekül aus nur wenigen Atomen, blockierte im aktiven Zentrum des Enzyms eine für die Katalyse entscheidende Stelle. Der Effekt tritt erst bei höheren Konzentrationen von Acetaldehyd auf, weil Crotonaldehyd erst unter diesen Bedingungen in hinreichender Menge gebildet wird.

„Der Einblick in die molekularen Abläufe legte zudem eine einfache Möglichkeit nah, um das Problem abzustellen“, erklärt Markus Dick, Erstautor der Studie. Indem die Forscher eine Aminosäure im Bauplan des Enzyms austauschten, konnten sie eine Version des Enzyms herstellen, die vollständig resistent gegen die Acetaldehyd-Bremse ist. Die Hoffnungen, die von Seiten der Industrie in DERA gesetzt werden, könnten sich dadurch nun erfüllen.

Prof. Dr. Dieter Willbold, Leiter des Biomolekularen Zentrums und Direktor des Düsseldorfer Instituts für Physikalische Biologie und des Jülicher ICS-6 dazu: „Für die Optimierung biotechnologischer Prozesse könnte diese strukturbasierte Vorgehensweise Schule machen.“

Originalpublikation
Markus Dick, Rudolf Hartmann, Oliver H. Weiergräber, Carolin Bisterfeld, Thomas Classen, Melanie Schwarten, Philipp Neudecker, Dieter Willbold and Jörg Pietruszka, Mechanism-based inhibition of an aldolase at high concentrations of its natural substrate acetaldehyde: structural insights and protective strategies, Chem. Sci., 2016, 7 (July), 4492-4502.
DOI: 10.1039/C5SC04574F

Kontakt
Prof. Dr. Jörg Pietruszka
Institut für Bioorganische Chemie der HHU im Forschungszentrum Jülich
Tel.: 02461/61-4158
E-Mail: j.pietruszka@fz-juelich.de

Prof. Dr. Dieter Willbold
Institut für Physikalische Biologie der HHU /
Institute of Complex Systems, Strukturbiochemie (ICS-6) des Forschungszentrums Jülich
Tel.: 02461/61-2100
E-Mail: d.willbold@fz-juelich.de

Dr.rer.nat. Arne Claussen | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.hhu.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Eine Karte der Zellkraftwerke
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung
18.08.2017 | Deutsches Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie