Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Enzym knackt stabile aromatische Verbindungen

09.07.2015

Freiburger Wissenschaftler erklären, wie Bakterien Benzolringe ohne Sauerstoff abbauen

Ein Forschungsteam der Universität Freiburg um Prof. Dr. Matthias Boll und seine Doktorandin Simona G. Huwiler hat herausgefunden, wie Bakterien mithilfe eines Enzyms aromatische Benzolringe – extrem stabile Verbindungen aus sechs Kohlenstoffatomen – ohne Beteiligung von Sauerstoff abbauen können.


Die Freiburger Forschungsgruppe bringt Licht ins Dunkel einer ungewöhnlichen biologischen Reaktion mit einem Wolfram-Atom (dunkelrot) im aktiven Zentrum, das einen aromatischen Ring (grün) durch Reduktion destabilisiert.

Grafik: Simona G. Huwiler (Arbeitsgruppe Boll) und Dr. Till Biskup (Arbeitsgruppe Weber), Universität Freiburg

Die Analyse der Kristallstruktur dieses Schlüsselenzyms ergab, dass ein Wolfram-Atom im katalytischen Zentrum maßgeblich an der Zerstörung des aromatischen Systems des Benzolrings beteiligt ist. Wolfram ist das schwerste Metall mit biologischer Funktion.

Da Benzolringe in der Natur häufig vorkommen, ist es für Mensch und Umwelt wichtig zu wissen, wie sie im globalen Kohlenstoffzyklus recycelt werden. Dies gilt insbesondere, weil sich im Erdöl schwer abbaubare, oft toxische und krebserzeugende aromatische Verbindungen anreichern. Das Team veröffentlichte die Ergebnisse in der Fachzeitschrift „Nature Chemical Biology“.

Aromatische Benzolringe werden überwiegend von Holzpflanzen gebildet und zeichnen sich durch einen charakteristischen Geruch aus. Seit langem ist bekannt, dass sauerstoffabhängige Bakterien diese Ringe mit Hilfe von Sauerstoff abbauen.

Wie jedoch Bakterien in Bereichen ohne Sauerstoff wie in Sedimenten von Meeren oder Flüssen, kontaminiertem Grundwasser oder Biogasanlagen aromatische Verbindungen abbauen, war bislang unklar.

Das Team um Boll hat durch die Aufklärung der Struktur des Enzyms Klasse-II-Benzoyl-CoA-Reduktase entdeckt, wie ein Wolfram-Cofaktor das aromatische System des Benzolrings ohne Beteiligung von Sauerstoff aufbrechen kann. Die Reaktion reduziert das aromatische Ringsystem zu einem nicht-aromatischen zyklischen Dien. Der weitere Abbau dieses Produktes ist dann vergleichsweise einfach.

Eine analoge Reaktion ist seit 70 Jahren bekannt: 1944 beschrieb Arthur Birch die heute als Birch-Reduktion in Lehrbüchern bekannte Synthese von zyklischen Dienen aus aromatischen Ringen. Sie wird unter anderem bei der Synthese von Arzneimitteln eingesetzt, benötigt allerdings giftige Substanzen wie Alkali-Metalle und Ammoniak. Ein Biokatalysator, der ohne diese giftigen Substanzen eine gleichartige Reaktion katalysiert, ist biotechnologisch interessant.

Die Ergebnisse dieser Studie entstanden unter der Leitung von Matthias Boll in Zusammenarbeit mit Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Biophysik in Frankfurt sowie französischer und kanadischer Forschungseinrichtungen. An der Forschung beteiligt waren auch Dr. Till Biskup und Prof. Dr. Stefan Weber vom Institut für Physikalische Chemie der Universität Freiburg.

Matthias Boll leitet eine Arbeitsgruppe am Institut für Biologie II der Universität Freiburg und ist Projektleiter an der Spemann Graduiertenschule für Biologie und Medizin (SGBM) sowie des Graduiertenkollegs GRK 1976 „Funktionelle Diversität von Cofaktoren in Enzymen“. Zudem ist er Sprecher des von der Deutschen Forschungsgemeinschaft (DFG) geförderten Schwerpunktprogramms „Biologische Transformationen von Kohlenwasserstoffen ohne Sauerstoff: vom molekularen zum globalen Maßstab“ (SPP 1319).

Originalpublikation
S. G. Huwiler, T. Weinert, J. W. Kung, S. Weidenweber, P. Hellwig, H.-J. Stärk, T. Biskup, S. Weber, J. J. Cotelesage, G. N. George, U. Ermler & M. Boll (2015) Structural basis of enzymatic benzene ring reduction. Nature Chemical Biology, doi:10.1038/nchembio.1849
www.nature.com/nchembio/journal/vaop/ncurrent/full/nchembio.1849.html

Kontakt:
Prof. Dr. Matthias Boll
Institut für Biologie II
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-2649
E-Mail: matthias.boll@biologie.uni-freiburg.de

Simona G. Huwiler
Institut für Biologie II
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-2777
E-Mail: simona.huwiler@biologie.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2015/pm.2015-07-09.101

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Bakterien Biologie Biology Chemical Biology Enzym Sauerstoff giftige Substanzen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen