Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Enzym knackt stabile aromatische Verbindungen

09.07.2015

Freiburger Wissenschaftler erklären, wie Bakterien Benzolringe ohne Sauerstoff abbauen

Ein Forschungsteam der Universität Freiburg um Prof. Dr. Matthias Boll und seine Doktorandin Simona G. Huwiler hat herausgefunden, wie Bakterien mithilfe eines Enzyms aromatische Benzolringe – extrem stabile Verbindungen aus sechs Kohlenstoffatomen – ohne Beteiligung von Sauerstoff abbauen können.


Die Freiburger Forschungsgruppe bringt Licht ins Dunkel einer ungewöhnlichen biologischen Reaktion mit einem Wolfram-Atom (dunkelrot) im aktiven Zentrum, das einen aromatischen Ring (grün) durch Reduktion destabilisiert.

Grafik: Simona G. Huwiler (Arbeitsgruppe Boll) und Dr. Till Biskup (Arbeitsgruppe Weber), Universität Freiburg

Die Analyse der Kristallstruktur dieses Schlüsselenzyms ergab, dass ein Wolfram-Atom im katalytischen Zentrum maßgeblich an der Zerstörung des aromatischen Systems des Benzolrings beteiligt ist. Wolfram ist das schwerste Metall mit biologischer Funktion.

Da Benzolringe in der Natur häufig vorkommen, ist es für Mensch und Umwelt wichtig zu wissen, wie sie im globalen Kohlenstoffzyklus recycelt werden. Dies gilt insbesondere, weil sich im Erdöl schwer abbaubare, oft toxische und krebserzeugende aromatische Verbindungen anreichern. Das Team veröffentlichte die Ergebnisse in der Fachzeitschrift „Nature Chemical Biology“.

Aromatische Benzolringe werden überwiegend von Holzpflanzen gebildet und zeichnen sich durch einen charakteristischen Geruch aus. Seit langem ist bekannt, dass sauerstoffabhängige Bakterien diese Ringe mit Hilfe von Sauerstoff abbauen.

Wie jedoch Bakterien in Bereichen ohne Sauerstoff wie in Sedimenten von Meeren oder Flüssen, kontaminiertem Grundwasser oder Biogasanlagen aromatische Verbindungen abbauen, war bislang unklar.

Das Team um Boll hat durch die Aufklärung der Struktur des Enzyms Klasse-II-Benzoyl-CoA-Reduktase entdeckt, wie ein Wolfram-Cofaktor das aromatische System des Benzolrings ohne Beteiligung von Sauerstoff aufbrechen kann. Die Reaktion reduziert das aromatische Ringsystem zu einem nicht-aromatischen zyklischen Dien. Der weitere Abbau dieses Produktes ist dann vergleichsweise einfach.

Eine analoge Reaktion ist seit 70 Jahren bekannt: 1944 beschrieb Arthur Birch die heute als Birch-Reduktion in Lehrbüchern bekannte Synthese von zyklischen Dienen aus aromatischen Ringen. Sie wird unter anderem bei der Synthese von Arzneimitteln eingesetzt, benötigt allerdings giftige Substanzen wie Alkali-Metalle und Ammoniak. Ein Biokatalysator, der ohne diese giftigen Substanzen eine gleichartige Reaktion katalysiert, ist biotechnologisch interessant.

Die Ergebnisse dieser Studie entstanden unter der Leitung von Matthias Boll in Zusammenarbeit mit Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Biophysik in Frankfurt sowie französischer und kanadischer Forschungseinrichtungen. An der Forschung beteiligt waren auch Dr. Till Biskup und Prof. Dr. Stefan Weber vom Institut für Physikalische Chemie der Universität Freiburg.

Matthias Boll leitet eine Arbeitsgruppe am Institut für Biologie II der Universität Freiburg und ist Projektleiter an der Spemann Graduiertenschule für Biologie und Medizin (SGBM) sowie des Graduiertenkollegs GRK 1976 „Funktionelle Diversität von Cofaktoren in Enzymen“. Zudem ist er Sprecher des von der Deutschen Forschungsgemeinschaft (DFG) geförderten Schwerpunktprogramms „Biologische Transformationen von Kohlenwasserstoffen ohne Sauerstoff: vom molekularen zum globalen Maßstab“ (SPP 1319).

Originalpublikation
S. G. Huwiler, T. Weinert, J. W. Kung, S. Weidenweber, P. Hellwig, H.-J. Stärk, T. Biskup, S. Weber, J. J. Cotelesage, G. N. George, U. Ermler & M. Boll (2015) Structural basis of enzymatic benzene ring reduction. Nature Chemical Biology, doi:10.1038/nchembio.1849
www.nature.com/nchembio/journal/vaop/ncurrent/full/nchembio.1849.html

Kontakt:
Prof. Dr. Matthias Boll
Institut für Biologie II
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-2649
E-Mail: matthias.boll@biologie.uni-freiburg.de

Simona G. Huwiler
Institut für Biologie II
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-2777
E-Mail: simona.huwiler@biologie.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2015/pm.2015-07-09.101

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Bakterien Biologie Biology Chemical Biology Enzym Sauerstoff giftige Substanzen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sollbruchstellen im Rückgrat - Bioabbaubare Polymere durch chemische Gasphasenabscheidung
02.12.2016 | Gesellschaft Deutscher Chemiker e.V.

nachricht "Fingerabdruck" diffuser Protonen entschlüsselt
02.12.2016 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie