Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Enzym Eri1 baut modifizierte Histon-mRNAs ab

25.01.2013
Der schnelle Abbau von Histon-mRNA wird durch das Enzym Eri1 vermittelt. Die Voraussetzung dafür ist eine chemische Modifikation der RNA.

Dies konnten Wissenschaftler des Instituts für Molekulare Immunologie (IMI) und der Abteilung Genvektoren (AGV) des Helmholtz Zentrums München zeigen und veröffentlichten ihre Ergebnisse kürzlich in dem Fachjournal ‚Nature Structural and Molecular Biology‘. Die Entdeckung trägt entscheidend zum Verständnis der RNA-Abbauprozesse bei, die bislang erst wenig erforscht sind.

RNAs sind Kopien der DNA. In Form von Boten-RNAs (mRNA) dienen sie der Herstellung von Genprodukten (Proteinen). Man unterscheidet dabei kodierende und nicht-kodierende RNA-Moleküle, letztere können eine regulatorische Funktion haben. Die Abbauprozesse dieser verschiedenen RNA Klassen wurden in den letzten Jahren intensiv untersucht. Die Arbeitsgruppe um Vigo Heissmeyer vom IMI konnte nun zeigen, dass eine chemische Modifikation die Grundlage für den Abbau durch das Enzym Eri1 darstellt.

Bei der sogenannten Uridylierung kommt es zu einer Verlängerung der RNA, indem ein sich wiederholender RNA-Baustein, das Uridin, angefügt wird. Als Arbeitsmodell diente den Wissenschaftlern die Histon-mRNA. Histone sind Proteine, die im Zellkern der platzsparenden Verpackung der DNA dienen. Histon-mRNAs weisen die Besonderheit auf, dass sich an ihrem Ende eine haarnadelförmige Struktur befindet, welche die RNA stabilisiert.

An diesem Ende wird die Histon-mRNA uridinyliert und von Eri1 in der Phase des Zellzyklus, in der keine DNA mehr verpackt werden muss, abgebaut. So sorgt Eri1 dafür, dass der Histon-mRNA-Gehalt in der Zelle am Ende der DNA-Vervielfältigung vor der Zellteilung drastisch reduziert wird. „Wir gehen davon aus, dass Eri1 verhindert, dass überschüssiges und potentiell genomschädigendes Histon-Protein produziert wird. Eine Gefahr, die insbesondere bei Keimzellen oder Zellen des Immunsystems gegeben ist, da diese schnelle Zellteilungen durchlaufen“, sagt Kai Hoefig vom IMI und Erstautor der Studie.

Die Modifikation der Uridylierung ist erst seit wenigen Jahren bekannt und konnte mittlerweile bei vielen wichtigen RNA-Klassen nachgewiesen werden. Darunter sind auch die regulatorischen, kleinen RNAs (miRNA) zu nennen. „Da noch keine Enzyme bekannt sind, die uridylierte miRNAs abbauen, wollen wir in Zukunft erforschen ob Eri1 diese in einer ähnlichen Weise kontrolliert. miRNAs sind als Regulatoren der Genexpression in vielen zellulären Prozessen von großer Bedeutung“, sagt Vigo Heissmeyer.

Weitere Informationen

Original-Publikation:
Hoefig, K. et al. (2013), Eri1 degrades the stem-loop of oligouridylated histone mRNAs to induce replication-dependent decay, Nature Structural and Molecular Biology, doi: 10.1038/nsmb.2450

Link zur Fachpublikation: http://www.nature.com/nsmb/journal/v20/n1/full/nsmb.2450.html

Das Helmholtz Zentrum München verfolgt als deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.000 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 34.000 Beschäftigten angehören. http://www.helmholtz-muenchen.de

Das Institut für Molekulare Immunologie (IMI) betreibt anwendungsorientierte Grundlagenforschung an der Schnittstelle von Hämatologie, Immunologie, Onkologie und Transplantationsbiologie. Mithilfe zell- und molekularbiologischer Methoden wird das Immunsystem moduliert. Eine Stimulation des Immunsystems soll als Option für Patienten nutzbar gemacht werden, etwa bei der Immun- und Gentherapie von Krebs und Autoimmunerkrankungen oder von Transplantat-Abstoßungsreaktionen.

Ansprechpartner für die Medien:
Abteilung Kommunikation, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg - Tel.: 089-3187-2238 - Fax: 089-3187-3324 - E-Mail: presse@helmholtz-muenchen.de
Fachlicher Ansprechpartner:
Prof. Vigo Heissmeyer, Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institut für Molekulare Immunologie, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel.: 089-3187-1214 - E-Mail: vigo.heissmeyer@helmholtz-muenchen.de

Abteilung Kommunikation | Helmholtz Zentrum
Weitere Informationen:
http://www.helmholtz-muenchen.de/
http://www.nature.com/nsmb/journal/v20/n1/full/nsmb.2450.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Besser lernen dank Zink?
23.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Raben: "Junggesellen" leben in dynamischen sozialen Gruppen
23.03.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen