Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Enzym beschleunigt Regeneration von Nervenfasern

01.08.2014

Am Modell des Ischiasnervs haben Forscher der Neurologischen Klinik des Universitätsklinikums Düsseldorf entdeckt, dass das Enzym Glycogen synthase kinase 3 (GSK3) in Nervenzellen die Regeneration von Nervenfasern erheblich beschleunigen kann. Entscheidend ist dabei die Aufrechterhaltung seiner Aktivität, die normalerweise bei Verletzungen gehemmt wird. Die Studienergebnisse wurden am Donnerstag, den 31. Juli 2014 in der renommierten Fachzeitschrift „Nature Communications“ veröffentlicht.

Verletzungen von Nerven – etwa jene, die die Bewegung von Armen und Beinen steuern – führen häufig zu dauerhaften Funktionsstörungen, da die Nervenfasern oft nur unvollständig regenerieren. Für betroffene Patienten bedeuten solche Störungen der Motorik und der Sensibilität eine erhebliche Belastung, die mit schwerwiegenden Beeinträchtigungen der Lebensqualität einhergehen kann.


Regenerationsphasen des verletzten Ischiasnervs bei Mäusen mit abgeschaltetem bzw. aktiviertem Enzym GSK3

Foto: UKD

Der Erfolg einer vollständigen Genesung hängt mitunter von der Regenerationsgeschwindigkeit der nachwachsenden Nervenfasern ab, die das Zielgewebe erneut anregen. „Ein wesentliches Ziel der Forschung ist es, neue Ansätze zur Beschleunigung des Nachwachsens von Nervenfasern zu entwickeln“, sagt Prof. Dr. Dietmar Fischer, Leiter des Bereichs Experimentelle Neurologie der Neurologischen Klinik des Universitätsklinikums Düsseldorf. Am Tiermodell ist ihm und seinem Forscherteam dies nun gelungen.

Dabei verwendeten die Wissenschaftler Mäuse, bei denen ein bestimmtes Enzym (GSK3) nicht mehr abgeschaltet werden kann. Diese Inaktivierung des Enzyms findet normalerweise in verletzten Nervenzellen statt und wurde bisher als essentiell für das Nervenfaserwachstum erachtet. An den Mäusen haben die Düsseldorfer Forscher jedoch entdeckt, dass die Nervenfaserregeneration durch das aktive Enzym im verletzten Ischiasnerv erheblich verbessert wurde.

„Bereits eine Woche nach Schädigung des Ischiasnervs konnten die Tiere ihre durch die Verletzung zuvor gelähmten Zehen wieder bewegen und sensorische Reize wahrnehmen. Dies geschieht normalerweise erst wesentlich später und im deutlich geringeren Ausmaß“, erklärt Prof. Fischer

Die Forscher konnten zudem zeigen, dass dieser regenerationsbeschleunigende Effekt auf die Aufrechterhaltung der Aktivität von GSK3 zurückzuführen ist. Daraus ergeben sich neue Ansätze für potentielle Therapien zur Nervenregeneration, wie die Entwicklung von Medikamenten, welche die Abnahme der Aktivität von GSK3 verhindern bzw. nachfolgende molekulare Prozesse aufrechterhalten. „An der Entwicklung derartiger Ansätze wird unser Team auch in den nächsten Jahren weiterarbeiten“, sagt Prof. Fischer. „Wenngleich wir nun einen neuen, sehr vielversprechenden Ansatz gefunden haben, sind für die Weiterentwicklung bis hin zu einer klinischen Anwendung am Patienten noch weitere Untersuchungen notwendig.“

Abbildung: Unverletzte Mäuse können normalerweise ihre Zehen aktiv spreizen. Eine Verletzung des Ischiasnervs führt zur vollständigen Lähmung der Zehen, und die Mäuse zeigen erst nach 14 Tagen eine leichte Erholung. Tiere, bei denen das Enzym GSK3 nicht mehr abgeschaltet werden kann, regenerieren hingegen wesentlich schneller und qualitativ besser, so dass die Lähmung bereits nach 11 Tagen vollständig verschwunden und die Funktion wiederhergestellt

Literatur: Gobrecht et al., 2014, Nature Communications

Kontakt: Prof. Dr. Dietmar Fischer, Leiter des Bereichs Experimentelle Neurologie der Neurologischen Klinik des Universitätsklinikums Düsseldorf, Tel.: 0211 / 302039237

Susanne Dopheide | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-duesseldorf.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics