Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Enzym aus Algen bildet den Kraftstoff von morgen: Entdeckung ebnet den Weg für optimierte Hydrogenasen

19.11.2009
Warum Sauerstoff tödlich ist für die biologische Wasserstofffabrik

Von einer mikroskopisch kleinen Grünalge wollen sich Forscher "eine Scheibe abschneiden": Hocheffizient und ohne Treibhausgasemission kann eines ihrer Enzyme molekularen Wasserstoff produzieren - den umweltfreundlichen Kraftstoff der Zukunft.

Einen Haken hat die Sache aber: Das Ganze funktioniert nur unter Ausschluss von Sauerstoff. Kommt Luft ins Spiel, geht die Wasserstofffabrik sofort und endgültig zugrunde, was die großtechnische Nutzung des Enzyms erschwert. Warum Sauerstoff so zerstörerisch wirkt, haben Bochumer Biologen

um Prof. Dr. Thomas Happe gemeinsam mit Kollegen aus Oxford und Berlin auf molekularer Ebene untersucht.

Ergebnis: Sauerstoffatome docken am selben Bindungsort an wie das eigentliche Substrat, der Wasserstoff. Durch Elektronenübertragung entstehen aggressive Sauerstoffformen, die Teile des Enzymkerns attackieren. Ziel der Forscher ist es jetzt, das Enzym gegen Sauerstoff unempfindlich zu machen. Sie berichten in den Proceedings of the National Academy of Science (PNAS) und im Journal of the American Chemical Society (JACS).

Wasserstoff: zukunftsträchtiger Energieträger

Molekularer Wasserstoff (H2) gilt als idealer Energieträger der Zukunft. In Kombination mit effizienten Brennstoffzellen liefert seine Verbrennung umweltfreundlich erzeugte Elektrizität. Es wird dabei keinerlei Treibhausgas frei, sondern nur reines Wasser. Wasserstoff wird allerdings bisher in großen Mengen nur aus fossilen Energieträgern wie Erdöl hergestellt. In der Natur gibt es aber Vorbilder für eine einfache, saubere und sehr effektive Produktion von Wasserstoff. Bestimmte Proteine, so genannte Hydrogenasen, wirken als Katalysatoren und können aus Elektronen und Protonen molekularen Wasserstoff herstellen. Ein Protein kann bis zu 9.000 Moleküle Wasserstoff pro Sekunde produzieren.

Grünalgen produzieren Wasserstoff bei Energieüberschuss

Diese Hydrogenasen kommen auch in Grünalgen vor, die mittels Energie aus Sonnenlicht Wasser zu Sauerstoff, Protonen (H+) und Elektronen (e-) spalten können. Dank der Hydrogenase haben die Grünalgen u. a. die Möglichkeit, überschüssige Energie in Form von Elektronen auf Protonen zu übertragen, wobei Wasserstoff entsteht. In der Arbeitsgruppe Photobiotechnologie am Lehrstuhl Biochemie der Pflanzen erforscht Prof. Dr. Thomas Happe die Zusammenhänge von Photosynthese und Wasserstoffproduktion am Beispiel der einzelligen Grünalge Chlamydomonas reinhardtii. Diese photosynthetisch aktiven Algen geben unter Schwefelmangelbedingungen große Mengen Wasserstoff an ihre Umgebung ab. Seit dieser Entdeckung im Jahr 2000 gilt die photobiologische Wasserstoffproduktion als viel versprechende Möglichkeit zur Herstellung von umweltfreundlichem Wasserstoff.

Der katalytisch aktive Kern

Die AG Photobiotechnologie arbeitet an der biochemischen und biophysikalischen Charakterisierung der für die Wasserstoffproduktion verantwortlichen Enzyme. Die Hydrogenasen verfügen über einen besonderen Eisen-Schwefel-Kern (der so genannte H-Kluster), an dem die Bildung von Wasserstoffgas mit extrem hoher Geschwindigkeit katalysiert wird. Der H-Kluster besteht aus einem Kern aus vier Eisen- und vier Schwefelatomen (4Fe-4S-Kern), der über eine Schwefelverbindung an ein weiteres Kluster mit zwei Eisen- und zwei Schwefelatomen (2Fe-2S-Kluster) gebunden ist. Dieses Subkluster besitzt ungewöhnliche Kohlenstoffmonoxid- und Cyanid-Liganden und ist der Bindungsort für den Wasserstoff.

Inaktivierung der Hydrogenase durch Sauerstoff

"Da es für die Nutzung der Hydrogenasen als biologische Katalysatoren zur Produktion von Wasserstoff gilt, ihre extreme Sauerstoffempfindlichkeit zu überwinden, fragen wir uns: Warum werden alle Hydrogenasen so schnell und irreversibel durch Luftsauerstoff inaktiviert?", erklärt Prof. Happe. In enger Zusammenarbeit mit Kollegen aus Oxford und Berlin gelang es ihm und seinem Doktoranden Sven Stripp nun, den Mechanismus der Inaktivierung der Enzyme auf atomarer Ebene aufzuklären. Mit Hilfe modernster biophysikalischer Methoden wie Proteinfilm-Elektrochemie und Röntgenabsorptionsspektroskopie fanden die Forscher heraus, dass das Sauerstoff-Molekül genau wie das eigentliche Substrat, der Wasserstoff, an das 2Fe-2S-Kluster gebunden wird. Allerdings geht die zerstörerische Wirkung des Sauerstoff-Moleküls offenbar nicht direkt von seiner Bindung an dieses Kluster aus. Vielmehr konnten die Forscher zeigen, dass das weiter entfernte 4Fe-4S-Cluster kurz nach der Bindung des O2-Moleküls nicht mehr nachweisbar ist, also zerstört wird. Die Wissenschaftler postulieren, dass durch eine Übertragung von Elektronen auf den gebundenen Sauerstoff, aggressive "reaktive" Sauerstoffvarianten (reactive oxygen species) entstehen, die dann in einer zweiten Reaktion Teile des 4Fe-4S-Kluster attackieren, dem bis dato keine Relevanz für die Sauerstoffsensitivität der Hydrogenasen zugeschrieben wurde.

Hochdurchsatz-Roboter-Technologie hilft bei der Suche

Diese Entdeckung ebnet den Weg für eine gezielte Modifikation der Hydrogenase, die sie gegenüber Luftsauerstoff unempfindlicher machen soll. "Wir arbeiten an einem viel versprechenden Ansatz, der die Prinzipien der "gerichteten Evolution" und des "Rationalen Protein Designs" kombiniert", so Prof. Happe. Die hierbei erzeugten Enzymvarianten werden mit einem einfachen Screening-Verfahren auf erhöhte Sauerstoff-Toleranz getestet. Auf das Arbeitsprogramm zugeschnitten wird weltweit erstmals unter Sauerstoffabschluss ein Roboter System installiert, das sowohl ein effizientes Screening der Enzymbibliotheken ermöglicht, als auch eine automatisierte Anzucht und Analyse von Kristallen sauerstoffsensibler Proteine gewährleistet, welche für die Strukturaufklärung der neuen Enzyme notwendig sind.

Titelaufnahmen

Sven T. Stripp, Gabrielle Goldet, Caterina Brandmayr, Oliver Sanganas, Kylie A. Vincent, Michael Haumann, Fraser A. Armstrong and Thomas Happe: How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms. In: PNAS 2009 106:17331-17336; published online before print September 28, 2009, doi:10.1073/pnas.0905343106

Gabrielle Goldet, Caterina Brandmayr, Sven T. Stripp, Thomas Happe, Christine Cavazza, Juan C. Fontecilla-Camps and Fraser A. Armstrong: Electrochemical Kinetic Investigations of the Reactions of [FeFe]-Hydrogenases with Carbon Monoxide and Oxygen: Comparing the Importance of Gas Tunnels and Active-Site Electronic/Redox Effects. In: J. Am. Chem. Soc., 2009, 131 (41), pp 14979-14989 DOI: 10.1021/ja905388j

Weitere Informationen

Prof. Dr. Thomas Happe, AG: Photobiotechnologie, Fakultät für Biologie und Biotechnologie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-27026, E-Mail: Thomas.Happe@rub.de

Redaktion: Meike Drießen

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Einblicke in die Welt der Trypanosomen
16.08.2017 | Julius-Maximilians-Universität Würzburg

nachricht Geographie verrät das Alter von Viren
16.08.2017 | Universität Bern

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Wissenschaftler beleuchten den „anderen Hochtemperatur-Supraleiter“

Eine von Wissenschaftlern des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) geleitete Studie zeigt, dass Supraleitung und Ladungsdichtewellen in Verbindungen der wenig untersuchten Familie der Bismutate koexistieren können.

Diese Beobachtung eröffnet neue Perspektiven für ein vertieftes Verständnis des Phänomens der Hochtemperatur-Supraleitung, ein Thema, welches die Forschung der...

Im Focus: Tests der Quantenmechanik mit massiven Teilchen

Quantenmechanische Teilchen können sich wie Wellen verhalten und mehrere Wege gleichzeitig nehmen, um an ihr Ziel zu gelangen. Dieses Prinzip basiert auf Borns Regel, einem Grundpfeiler der Quantenmechanik; eine mögliche Abweichung hätte weitreichende Folgen und könnte ein Indikator für neue Phänomene in der Physik sein. WissenschafterInnen der Universität Wien und Tel Aviv haben nun diese Regel explizit mit Materiewellen überprüft, indem sie massive Teilchen an einer Kombination aus Einzel-, Doppel- und Dreifachspalten interferierten. Die Analyse bestätigt den Formalismus der etablierten Quantenmechanik und wurde im Journal "Science Advances" publiziert.

Die Quantenmechanik beschreibt sehr erfolgreich das Verhalten von Partikeln auf den kleinsten Masse- und Längenskalen. Die offensichtliche Unvereinbarkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

Anbausysteme im Wandel: Europäische Ackerbaubetriebe müssen sich anpassen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Einblicke in die Welt der Trypanosomen

16.08.2017 | Biowissenschaften Chemie

Maschinensteuerung an Anwender: Intelligentes System für mobile Endgeräte in der Fertigung

16.08.2017 | Informationstechnologie

Komfortable Software für die Genomanalyse

16.08.2017 | Informationstechnologie